

Capteurs - Environnement

[Mise à jour le 1/5/2024]

1. Généralités sur les grandeurs physiques

1.1 Température

• Ressource : Wikipédia

1.2 Humidité

• Ressource : Wikipédia

1.3 Pression

• Ressource : Wikipédia

2. Capteurs de température et de pression

2.1 BMP280

2.1.1 Présentation

• Source : wiki Adafruit

Ce capteur est basé sur le circuit BMP280 et mesure la pression atmosphérique, la température et l'altitude. Il communique avec un microcontrôleur via le bus I2C ou SPI.

• Distributeur : Gotronic

Caractéristiques

- Alimentation: 3,3 à 5 Vcc
- Interface I2C (**SLA = 0x76** ou **0x77** idem BME280):
 - sur connecteur Qwiic ou Stemma QT
 - sur pastilles femelles au pas de 2,54 mm
- Interface SPI:
 - sur pastilles femelles au pas de 2,54 mm
- Plages de mesure:
 - température: -40°C à 85°C pression: 30 à 110 kPa
 - altitude: en fonction de la pression
- Précision:
 - température: ±1°C pression: ±1 hPa altitude: ±1 m
- Sortie 3,3 Vcc/100 mA maxi
- o Dimensions: 19,2 x 17,9 x 2,9 mm

Documentation

PDF à télécharger ici

2.1.2 Bibliothèques

- Arduino UNO
- Bibliothèque à installer dans l'IDE Arduino

Adafruit BMP280 Library par Adafruit

2.6.8 installed

Arduino library for BMP280 sensors. Arduino library for BMP280 pressure and altitude sensors.

2024/05/02 03:36 3/15 Capteurs - Environnement

2.1.3 Exemples de code

- Arduino UNO
- Resource : wiki Adafruit

• Exemple de code pour un Arduino Uno, MKR1010

Dans l'IDE Arduino, sélectionner : Fichier → Exemples → Adafruit BMP280 Library → bmp280test

...

3. Capteurs de température et d'humidité

3.1 HYT-221

3.1.1 Présentation

• Source : GitHub

Capteur capacitif **numérique d'humidité et de température** relative présentant une précision de base de $\pm 1,8\%$ HR, calibré et compensé en température. Communication via le **bus l**²**C** (**adresse 0x28** par défaut).

• Distributeur : Gotronic

Caractéristiques

∘ Alimentation: 2,7 à 5,5 Vcc

Consommation: <22 μA à 1 Hz (850 μA maxi)

Consommation en veille: <1 μA

• Plage de mesure:

1. 0 à 100% HR

2. -40°C à 125°C

• Précision:

1. ±1,8% HR

2. ±0,2°C

∘ Hystérésis: < ±1% HR

∘ Interface: I^2C (**SLA** = **0x28** - modifiable entre 0x00 et 0x7F)

∘ Dimensions: 16 x 10 x 6 mm

Documentation

PDF à télécharger ici

• Télécharger un exemple pour tester le capteur.

3.1.2 Bibliothèques

- Arduino UNO
- ESP8266 (Arduino)
- A venir
- Intégrée au code de l'exemple ci-dessous

3.1.3 Exemples de code

- Arduino UNO
- ESP8266 (Arduino)
- A venir
- Mise en oeuvre du capteur avec un afficheur OLED
 - Description : mesure de la température et de l'humidité à l'aide d'un capteur HYT221, test des boutons-poussoirs et affichage sur un écran Oled Adafruit SH1107.

2024/05/02 03:36 5/15 Capteurs - Environnement

- Matériels
 - Carte à microcontrôleur : Adafruit Feather Huzzah ESP8266 + Support Particle
 - Afficheur : Adafruit OLED SH1107
- Code Arduino

*.cpp

```
// Matériels : Adafruit Feather Huzzah ESP8266 + Support Particle,
Adafruit OLED SH1107, HYT221, câble Qwiic
// Logiciel : Arduino
// A ajouter
#include <SPI.h>
#include <Wire.h>
#include <Adafruit GFX.h>
#include <Adafruit SH110X.h>
// Adresse I2C par défaut de HYT 221, 271, 371
#define HYT ADDR 0x28
#define BUTTON A 0
#define BUTTON B 16
#define BUTTON_C 2
// Constructeurs
Adafruit_SH1107 display = Adafruit_SH1107(64, 128, &Wire);
void setup()
```

```
// Bus I2C
 Wire.begin();
 Wire.setClock(400000);
  display.begin(0x3C, true); // L'addresse de l'afficheur est 0x3C par
défaut
 // Configuration de l'affichage
 display.setRotation(1); // Affichage horizontal
  display.setTextSize(1);
  display.setTextColor(SH110X WHITE);
  display.clearDisplay(); // Pour ne pas afficher le logo Adafruit
chargé
                          // automatiquement à la mise sous tension
 // Connexion des boutons-poussoirs
  pinMode(BUTTON A, INPUT PULLUP);
  pinMode(BUTTON B, INPUT PULLUP);
  pinMode(BUTTON_C, INPUT_PULLUP);
void loop()
  double humidity;
  double temperature;
  // Efface le buffer
  display.clearDisplay();
  // Test des boutons
  display.setCursor(0, 0);
 if (!digitalRead(BUTTON A))
    display.print("[A]");
  if (!digitalRead(BUTTON B))
    display.print("[B]");
 if (!digitalRead(BUTTON C))
    display.print("[C]");
  // Titre
  display.setCursor(30, 0);
  display.println("HYT221");
 Wire.beginTransmission(HYT ADDR); // Début de la transmission avec le
capteur HYT221
 Wire.requestFrom(HYT_ADDR, 4); // Nécessite 4 octets
 // Read the bytes if they are available
 // Les deux premiers octets sont l'humidité, les deux suivants la
température
  if (Wire.available() == 4)
```

2024/05/02 03:36 7/15 Capteurs - Environnement

```
int b1 = Wire.read();
    int b2 = Wire.read();
    int b3 = Wire.read();
    int b4 = Wire.read();
    Wire.endTransmission(); // Fin de la transmission avec le capteur
HYT221
    // Calcul de l'humidité
    int rawHumidity = b1 << 8 | b2;</pre>
    rawHumidity = (rawHumidity \&= 0x3FFF);
    humidity = 100.0 / pow(2, 14) * rawHumidity;
    // Calcul de la température
    b4 = (b4 >> 2);
    int rawTemperature = b3 << 6 | b4;</pre>
    temperature = 165.0 / pow(2, 14) * rawTemperature - 40;
    // Affichage
    display.setCursor(0, 12);
    display.print("Temperature: ");
    display.print(temperature);
    display.println("C ");
    display.print("Humidite: ");
    display.print(humidity);
    display.println("% ");
    // Infos
    display.setCursor(5, 52);
    display.print("Appuyer sur A, B, C");
    display.display();
  }
  else
    display.println("Pas de mesure");
```


Télécharger le projet PlatformIO pour VSCode.

3.2 DHT22

• Source : Wiki Seeed studio

3.2.1 Présentation

Ce capteur de température et d'humidité (version pro DHT22) compatible Grove utilise une thermistance CTN et un capteur capacitif et délivre une sortie digitale régit par un protocole 1 fil spécifique (différent du 1 wire de Dallas).

• **Distributeur** : Gotronic

Caractéristiques

Interface: compatible Grove
Alimentation: 3,3 à 6 Vcc
Consommation: 1,5 mA

• Plage de mesure:

■ température: -40°C à 80°C (±0,5°C)

■ humidité: 5 à 99% HR (±2%)

Temps de réponse: 6 à 20 secondes

Interface : signal TOR (protocol spécifique 1 fil)

∘ Dimensions: 40 x 20 x 11 mm

Documentation

PDF à télécharger ici

3.2.2 Bibliothèques

- Arduino UNO
- RPi Pico (μPython)
- A partir du gestionnaire de bibliothèques de l'IDE Arduino, installer :

2024/05/02 03:36 9/15 Capteurs - Environnement

DHT sensor library par Adafruit

1.4.6 installed

Arduino library for DHT11, DHT22, etc Temp & Humidity Sensors Arduino library for DHT11, DHT22, etc Temp & Humidity Sensors

A venir

3.2.3 Exemple de code

- Arduino UNO
- RPi Pico (µPython)
- Ressource : Wiki seeedstudio

Exemple de code pour une Arduino Uno, MKR1010
 Dans l'IDE Arduino, sélectionner : Fichier → Exemples → DHT sensor library → DHTtester

A venir

4. Capteurs atmosphériques

4.1 BME280, BME680

4.1.1 Présentation

• Sources : site sparkfun

Capteur environnemental mesurant la **température, la pression barométrique et l'humidité**! Ce capteur est idéal pour toutes sortes de capteurs météorologiques / environnementaux et peut être utilisé à la fois en **I**²**C** et en SPI.

• Distributeurs : Gotronic

Caractéristiques

Alimentation: 3,3 à 5 Vcc

• Plages de mesure:

température: -40°C à 85°C
humidité: 0 à 100% HR
pression: 300 à 1100 hPa

Précision:

température: ±1°C (±0,5°C pour le BME680)

humidité: ±3%

pression: ±1 hPa (0,12hPa pour le BME680)

Interfaces:

I2C: sur connecteur Qwiic de Sparkfun ou Stemma QT d'Adafruit.

• Adresse I2C (BME280, BMP280): SLA = 0x76 ou 0x77 idem BMP280

SPI: sur pastilles femelles au pas de 2,54 mm (connecteurs mâles à souder inclus)

Documentation

PDF à télécharger BME280, BME680

4.1.2 Bibliothèques

- Arduino UNO
- RPi Pico(µPython)
- ESP32 (Arduino)

A venir

- A installer dans le Raspberry Pi Pico
 - Télécharger le code de la bibliothèque BME280 sur Github, le copier dans un fichier BME280.py et l'installer dans le dossier /lib sur le raspberry Pi Pico. Modifier éventuellement l'adresse du composant dans le code de la bibliothèque (0x76 par défaut), ou 0x77 (par ex: sparkfun).
- A installer dans I'IDE

• Un premier exemple pour tester le capteur

2024/05/02 03:36 11/15 Capteurs - Environnement

→ Fichier → Exemples → SparkFun BME280 → **Example1 BasicReadings.ino**

4.1.3 Exemples de code

- Arduino UNO
- RPi Pico(µPython)
- ESP32 (Arduino)

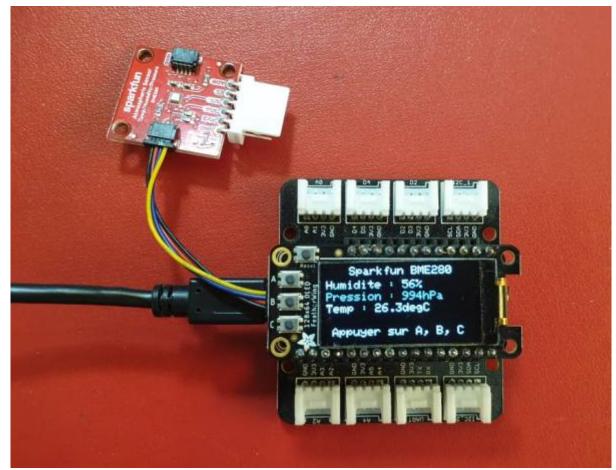
A venir

Ressource

 MicroPython: BME280 with ESP32 and ESP8266 (Pressure, Temperature, Humidity) sur Random Nerd Tutorials

Exemple de code pour un Raspberry Pi Pico

*.py


```
from machine import Pin, I2C
from time import sleep
import bme280 # bibliothèque du capteur (installée dans /lib

# RP2 - Pin assignment
i2c = I2C(1,scl=Pin(7), sda=Pin(6), freq=400_000)

while True:
   bme = bme280.BME280(i2c=i2c)
   temp = bme.temperature
   hum = bme.humidity
   pres = bme.pressure
   print('Temperature: ', temp)
   print('Humidity: ', hum)
   print('Pressure: ', pres)

sleep(5)
```

- Mise en oeuvre du capteur avec un afficheur OLED
 - Description: mesure de de la température, de l'humidité et de la pression à l'aide d'un capteur Sparkfun BME280, test des boutons-poussoirs et affichage sur un écran Oled Adafruit SH1107. L'écran et le capteur sont reliés via le système Qwiic de Sparkfun.

Matériels

- Carte à microcontrôleur : Adafruit Feather Huzzah ESP8266 + Support Particle
- Afficheur : Adafruit OLED SH1107
- Code Arduino

Exemple de code pour un ESP32 Feather Huzzah

*.cpp

```
// Matériels : Adafruit Feather Huzzah ESP8266 + Support Particle,
Adafruit OLED SH1107, Sparkfun BME280, câble Qwiic
// Logiciel : Arduino

#include <SPI.h>
#include <Wire.h>
#include <Adafruit_GFX.h>
#include <Adafruit_SH110X.h>
#include "SparkFunBME280.h"

#define BUTTON_A 0
#define BUTTON_B 16
#define BUTTON_C 2

// Constructeurs
```

2024/05/02 03:36 13/15 Capteurs - Environnement

```
Adafruit SH1107 display = Adafruit SH1107(64, 128, &Wire);
BME280 bme 280; // L'adresse du circuit BME280 est 0x77 par défaut
void setup()
 // Bus I2C
 Wire.begin();
                             // Initialisation
 Wire.setClock(400000);
                           // Fast I2C
  display.begin(0x3C, true); // L'addresse de l'afficheur est 0x3C par
défaut
  // Configuration de l'affichage
  display.setRotation(1); // Affichage horizontal
  display.setTextSize(1); // Horizontal
  display.setTextColor(SH110X WHITE);
  display.clearDisplay(); // Pour ne pas afficher le logo Adafruit
chargé
                          // automatiquement à la mise sous tension
 // Test de la communication avec le capteur
  if (bme 280.beginI2C() == false)
  {
    display.println("DEFAUT(s)");
    display.println("1. Le capteur BME280 ne repond pas ! ");
    display.println();
    display.print("BLOCAGE du PROGRAMME");
    display.display(); // Transfert du buffer sur l'écran
    while (1)
      delay(10); // Blocage du programme
  }
  // Connexion des boutons-poussoir
  pinMode(BUTTON A, INPUT PULLUP);
  pinMode(BUTTON B, INPUT PULLUP);
  pinMode(BUTTON C, INPUT PULLUP);
void loop()
  // Efface le buffer
  display.clearDisplay();
  // Test des boutons
  display.setCursor(0, 0);
 if (!digitalRead(BUTTON A))
    display.print("[A]");
  if (!digitalRead(BUTTON_B))
    display.print("[B]");
  if (!digitalRead(BUTTON C))
    display.print("[C]");
```

```
// Titre
display.setCursor(20, 0);
display.println("Sparkfun BME280");
// Humidité
display.setCursor(0, 12);
display.print("Humidite : ");
display.print(bme_280.readFloatHumidity(), 0);
display.println("%");
// Pression en hPa
display.setCursor(0, 22);
display.print("Pression : ");
display.print(bme_280.readFloatPressure() / 100, 0);
display.println("hPa");
// Température
display.setCursor(0, 32);
display.print("Temp : ");
display.print(bme_280.readTempC(), 1);
display.print("C");
// Infos
display.setCursor(5, 52);
display.print("Appuyer sur A, B, C");
// yield();
display.display(); // Transfert du buffer sur l'écran
delay(10);
```


Télécharger le projet PlatformIO pour VSCode.

4.2 SCD41

Capteur de CO², température et humidité. Voir Capteurs - Gaz

4.3 SGP30

• Capteur de qualité de l'air intérieur (CO2, COV, éthanol, H2). Voir Capteurs - Gaz

2024/05/02 03:36 15/15 Capteurs - Environnement

From:

https://webge.fr/dokuwiki/ - WEBGE Wikis

Permanent link:

https://webge.fr/dokuwiki/doku.php?id=materiels:capteurs:environnement:environnement

Last update: 2024/05/01 16:25

