
 

  



    2 Other Courses – Learn ESP32 with Arduino IDE course  

ESP32 Web Server with Arduino IDE  

Hello and thank you for downloading this project eBook! 

This quick eBook will help you build getting started and building a web server with the 

ESP32 using Arduino IDE. 

If you want to learn more about the ESP32, make sure you take a look at our course:  

 Learn ESP32 with Arduino IDE 

Introducing the ESP32 Board 

The ESP32 is the ESP8266 successor. It is loaded with lots of new features. It now combines 

Wi-Fi and Bluetooth wireless capabilities. 

 

There are a lot of ESP32 development boards. I encourage you to visit the ESP32.net 

website where each ESP32 chip and development board are listed. You can compare their 

differences and features. 

 

  

https://randomnerdtutorials.com/courses
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
http://esp32.net/
http://esp32.net/


    3 Other Courses – Learn ESP32 with Arduino IDE course  

In this ebook we’ll be using the ESP32 DEVKIT V1 DOIT board, but any other ESP32 with 

the ESP-WROOM-32 chip will work just fine. 

 

Here’s just a few examples of boards that are very similar and compatible with the project 

in this ebook. 

 

To compare several ESP32 developments boards, read the following article: 

 Best ESP32 development boards review and comparison  

  

https://randomnerdtutorials.com/courses
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://makeradvisor.com/tools/esp32-dev-board-wi-fi-bluetooth/
https://makeradvisor.com/esp32-development-boards-review-comparison/


    4 Other Courses – Learn ESP32 with Arduino IDE course  

Features 

The ESP32 comes with the ESP-WROOM-32 chip. It has a 3.3V voltage regulator that drops 

the input voltage to power the ESP32 chip. And it also comes with a CP2102 chip that 

allows you to plug the ESP32 to your computer to program it without the need for an FTDI 

programmer. 

 

The board has two on-board buttons: the ENABLE and the BOOT button. 

 

If you press the ENABLE button, it reboots the ESP32. If you hold down the BOOT button 

and then press the enable, the ESP32 reboots in programming mode.  

If you don’t know where to get the ESP32, you can check this page on Maker Advisor. 

  

https://randomnerdtutorials.com/courses
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://makeradvisor.com/tools/esp32-dev-board-wi-fi-bluetooth/


    5 Other Courses – Learn ESP32 with Arduino IDE course  

Specifications 

When it comes to the ESP32 chip specifications, you’ll find that: 

 The ESP32 is dual core, this means it has 2 processors. 

 It has Wi-Fi and bluetooth built-in. 

 It runs 32 bit programs. 

 The clock frequency can go up to 240MHz and it has a 512 kB RAM. 

 It also has wide variety of peripherals available, like: capacitive touch, ADCs, DACs, 

UART, SPI, I2C and much more.  

 

ESP32 Pinout 

The following figures clearly describe the board GPIOs and their functionalities. We 

recommend printing this pinout for a future reference. You can download the pinout in 

.pdf or .png files: 

 Printable version 

 Image version 30 pins 

 Image version 36 pins 

 

https://randomnerdtutorials.com/courses
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://github.com/RuiSantosdotme/ESP32-Course/raw/master/img/ESP32-DOIT-DEVKIT-V1-Board-Pinout.pdf
https://github.com/RuiSantosdotme/ESP32-Course/raw/master/img/ESP32-DOIT-DEVKIT-V1-Board-Pinout-30-GPIOs.png
https://github.com/RuiSantosdotme/ESP32-Course/raw/master/img/ESP32-DOIT-DEVKIT-V1-Board-Pinout-36-GPIOs.png


    6 Other Courses – Learn ESP32 with Arduino IDE course  

 

 

Learn how to use the ESP32 GPIOs: 

 ESP32 Pinout Reference: Which GPIO pins should you use? 

 

  

https://randomnerdtutorials.com/courses
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://randomnerdtutorials.com/esp32-pinout-reference-gpios/


    7 Other Courses – Learn ESP32 with Arduino IDE course  

Installing ESP32 in Arduino IDE 

Important: before starting this installation procedure, make sure you have the latest 

version of the Arduino IDE installed in your computer. If you don’t, uninstall it and install 

it again. Otherwise, it may not work. 

The ESP32 is currently being integrated with the Arduino IDE just like it was done for the 

ESP8266. This add-on for the Arduino IDE allows you to program the ESP32 using the 

Arduino IDE and its programming language. You can find the latest Windows instructions 

at the official GitHub repository. 

1. Installing the ESP32 Board 

To install the ESP32 board in your Arduino IDE, follow these next instructions: 

1) Open the preferences window from the Arduino IDE. Go to File  Preferences 

2) Enter https://dl.espressif.com/dl/package_esp32_index.json into the “Additional 

Board Manager URLs” field as shown in the figure below. Then, click the “OK” button. 

 

Note: if you already have the ESP8266 boards URL, you can separate the URLs with a 

comma as follows: 

https://dl.espressif.com/dl/package_esp32_index.json,  

http://arduino.esp8266.com/stable/package_esp8266com_index.json 

 

https://randomnerdtutorials.com/courses
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://github.com/espressif/arduino-esp32/blob/master/docs/arduino-ide/windows.md


    8 Other Courses – Learn ESP32 with Arduino IDE course  

3) Open boards manager. Go to Tools  Board Boards Manager… 

 

4) Search for ESP32 and press install button for the “ESP32 by Espressif Systems“: 

 

Testing the Installation 

Plug your ESP32 DOIT DEVKIT V1 Board to your computer. Then, follow these steps: 

1) Open Arduino IDE 

2) Select your Board in Tools  Board menu (in our case it’s the DOIT ESP32 DEVKIT V1) 

https://randomnerdtutorials.com/courses
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://makeradvisor.com/tools/esp32-dev-board-wi-fi-bluetooth/


    9 Other Courses – Learn ESP32 with Arduino IDE course  

 

3) Select the Port (if you don’t see the COM Port in your Arduino IDE, you need to install 

the ESP32 CP210x USB to UART Bridge VCP Drivers): 

 

4) Open the following example under File  Examples  WiFi (ESP32)  WiFi Scan 

https://randomnerdtutorials.com/courses
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers


    10 Other Courses – Learn ESP32 with Arduino IDE course  

 

5) A new sketch opens: 

 

https://randomnerdtutorials.com/courses
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/


    11 Other Courses – Learn ESP32 with Arduino IDE course  

6) Press the Upload button in the Arduino IDE. Wait a few seconds while the code compiles 

and uploads to your board. 

 

7) If everything went as expected, you should see a “Done uploading.” message. 

 

8) Open the Arduino IDE Serial Monitor at a baud rate of 115200: 

 

9) Press the ESP32 on-board Enable button and you should see the networks available 

near your ESP32: 

 

This is a very basic tutorial that illustrates how to prepare your Arduino IDE for the ESP32 

on your computer. 

https://randomnerdtutorials.com/courses
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/


    12 Other Courses – Learn ESP32 with Arduino IDE course  

Troubleshooting Tip #1: 

 “Failed to connect to ESP32: Timed out… Connecting…” 

When you try to upload a new sketch to your ESP32 and it fails to connect to your board, 

it means that your ESP32 is not in flashing/uploading mode. Having the right board name 

and COM por selected, follow these steps: 

 Hold-down the “BOOT” button in your ESP32 board. 

 

 Press the “Upload” button in the Arduino IDE to upload a new sketch: 

 

After you see the  “Connecting….” message in your Arduino IDE, release the finger from 

the “BOOT” button: 

 

After that, you should see the “Done uploading” message. 

https://randomnerdtutorials.com/courses
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/


    13 Other Courses – Learn ESP32 with Arduino IDE course  

Troubleshooting Tip #2:  

COM Port not found/not available 

If you plug your ESP32 board to your computer, but you can’t find the ESP32 Port available 

in your Arduino IDE (it’s grayed out): 

 

It might be one of these two problems: 1. USB drivers missing or 2. USB cable without 

data wires. 

1. If you don’t see your ESP’s COM port available, this often means you don’t have the USB 

drivers installed. Take a closer look at the chip next to the voltage regulator on board and 

check its name. 

The ESP32 DEVKIT V1 DOIT board uses the CP2102 chip. 

 

https://randomnerdtutorials.com/courses
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://makeradvisor.com/tools/esp32-dev-board-wi-fi-bluetooth/


    14 Other Courses – Learn ESP32 with Arduino IDE course  

Go to Google and search for your particular chip to find the drivers and install them in 

your operating system. 

 

You can download the CP2102 drivers on the Silicon Labs website. 

 

After they are installed, restart the Arduino IDE and you should see the COM port in the 

Tools menu. 

2. If you have the drivers installed, but you can’t see your device, double-check that you’re 

using a USB cable with data wires. USB cables from powerbanks often don’t have data 

wires (they are charge only). So, your computer will never establish a serial 

communication with your ESP32. Using a a proper USB cable should solve your problem. 

 

  

https://randomnerdtutorials.com/courses
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers


    15 Other Courses – Learn ESP32 with Arduino IDE course  

How to Identify Your ESP32 Board 

To make it easier to follow along, regardless of the ESP32 board you’re using, we’ve 

created this section to show you which changes you need to do to make your ESP32 work. 

Visiting the Product Page 

To identify your board, you can go to the product page where you purchased your ESP32. 

I’ve ordered mine from Banggood and here’s the product page. 

 

Please note that some vendors will add all sorts of keywords to their product name, so 

you might be thinking that you’re ordering an ESP-32S NodeMCU board and you actually 

bought an ESP32 DOT IT board. Even though they are very similar, they are different. 

ESP32 Board Name 

After reading your ESP32 product page, you should know the name of your board. But if 

you still have doubts, you can take a look at the back of the board. 

The name is usually printed with silk screen. In my case, you can clearly see this is 

the ESP32 DEVKIT V1 DOIT board. 

 

If you have an ESP32 NodeMCU, the following figure shows how it looks like (it 

says NodeMCU ESP-32S). 

 

https://randomnerdtutorials.com/courses
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
http://bit.ly/ESP32-BG


    16 Other Courses – Learn ESP32 with Arduino IDE course  

ESP32 Pinout 

Knowing the name of your board is very important so that you can search for its pinout. 

Now you can go to Google and search for your development board pinout. Search for 

your ESP32 board name and add the “pinout” keyword in the end. 

 

Then, find one image that has the same pinout as your ESP32.  

I also recommend visiting the ESP32.net website as it provides an extensive list with 

names and figures for all known ESP32 development boards. 

Blink – Example Sketch 

Let’s take a look at an example sketch to show you what you need to worry about, if you 

want to build a simple circuit that blinks an LED with the ESP32. Copy the following code 

to the Arduino IDE: 

https://github.com/RuiSantosdotme/ESP32-Course/blob/master/code/Blink_LED/Blink_LED.ino  

 

/* 

  Blink 

*/ 

 

// ledPin refers to ESP32 GPIO 23 

const int ledPin = 23; 

 

// the setup function runs once when you press reset or power the board 

void setup() { 

  // initialize digital pin ledPin as an output. 

  pinMode(ledPin, OUTPUT); 

} 

 

// the loop function runs over and over again forever 

void loop() { 

  digitalWrite(ledPin, HIGH);   // turn the LED on (HIGH is the voltage 

level) 

  delay(1000);                  // wait for a second 

  digitalWrite(ledPin, LOW);    // turn the LED off by making the voltage 

LOW 

  delay(1000);                  // wait for a second 

} 

 

https://randomnerdtutorials.com/courses
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
http://esp32.net/
https://github.com/RuiSantosdotme/ESP32-Course/blob/master/code/Blink_LED/Blink_LED.ino
https://github.com/RuiSantosdotme/ESP32-Course/blob/master/code/Blink_LED/Blink_LED.ino


    17 Other Courses – Learn ESP32 with Arduino IDE course  

As you can see, you need to connect an LED to pin 23 which refers to GPIO 23: 

const int ledPin = 23; 

If you’re using the ESP32 DEVKIT V1 DOIT board, you need to connect your LED to the first 

pin on the top right corner. 

 

But if you’re using the NodeMCU ESP-32S board, GPIO 23 is located in the 2nd pin of the 

top right corner, as shown in the figure below. 

 

Important: always check the pinout for your specific board, before building any circuit. 

https://randomnerdtutorials.com/courses
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/


    18 Other Courses – Learn ESP32 with Arduino IDE course  

Schematic 

Here’s a list of parts you need to assemble the circuit: 

 ESP32 DOIT DEVKIT V1 Board 

 5mm LED 

 330 Ohm resistor 

 Jumper wires 

 Breadboard (optional) 

Follow the next schematic to wire the LED to the ESP32 DEVKit DOIT board (also check 

where GND is located in your board). 

 

(This schematic uses the ESP32 DEVKIT V1 module version with 30 GPIOs – if you’re using another model, 

please check the pinout for the board you’re using.) 

Preparing the Arduino IDE 

After connecting an LED to the ESP32 board GPIO 23, you need to go 

to Tools  Board, scroll down to the ESP32 section and select the name of your ESP32 

board that you found earlier. In my case, it’s the DOIT ESP32 DEVKIT V1 board. 

https://randomnerdtutorials.com/courses
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://makeradvisor.com/tools/esp32-dev-board-wi-fi-bluetooth/
https://makeradvisor.com/tools/3mm-5mm-leds-kit-storage-box/
https://makeradvisor.com/tools/resistors-kits/
https://makeradvisor.com/tools/jumper-wires-kit-120-pieces/
https://makeradvisor.com/tools/mb-102-solderless-breadboard-830-points/


    19 Other Courses – Learn ESP32 with Arduino IDE course  

 

While having the ESP32 plugged to your computer. Go to Tools  Port and select a COM 

port available. 

 

https://randomnerdtutorials.com/courses
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/


    20 Other Courses – Learn ESP32 with Arduino IDE course  

Uploading the Sketch 

Go back to the Arduino IDE, press the Arduino IDE upload button and wait a few seconds 

while it compiles and uploads your sketch. 

 

The LED attached to GPIO 23 should be blinking every other second. 

 

  

https://randomnerdtutorials.com/courses
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/


    21 Other Courses – Learn ESP32 with Arduino IDE course  

ESP32 Web Server 

 

Before going straight to building the web server, it is important to outline what our web 

server will do, so that it is easier to follow the steps later on. 

 The web server you’ll build controls two LEDs connected to the ESP32 GPIOs 26, 

and 27. 

 You can access the ESP32 web server by typing the ESP32 IP address on a browser 

in the local network. 

 By clicking the buttons on your web server you can instantly change the state of 

each LED. 

This is just a simple example to illustrate how to build a web server that controls outputs, 

the idea is to replace those LEDs with a relay, or any other electronic components you 

want. 

Schematic 

Start by building the circuit. Connect two LEDs to your ESP32 as shown in the following 

schematic diagram – with one LED connected to GPIO 26, and another to GPIO 27. 

Here’s a list of parts you need to assemble the circuit: 

 ESP32 DOIT DEVKIT V1 Board 

 2x 5mm LED 

 2x 330 Ohm resistor 

 Breadboard 

 Jumper wires 

https://randomnerdtutorials.com/courses
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://makeradvisor.com/tools/5v-2-channel-relay-module-optocoupler/
https://makeradvisor.com/tools/esp32-dev-board-wi-fi-bluetooth/
https://makeradvisor.com/tools/3mm-5mm-leds-kit-storage-box/
https://makeradvisor.com/tools/resistors-kits/
https://makeradvisor.com/tools/mb-102-solderless-breadboard-830-points/
https://makeradvisor.com/tools/jumper-wires-kit-120-pieces/


    22 Other Courses – Learn ESP32 with Arduino IDE course  

 

(This schematic uses the ESP32 DEVKIT V1 module version with 36 GPIOs – if you’re using another model, 

please check the pinout for the board you’re using.) 

Building the Web Server 

After wiring the circuit, the next step is uploading the code to your ESP32. Copy the code 

below to your Arduino IDE, but don’t upload it yet. You need to make some changes to 

make it work for you. 

https://github.com/RuiSantosdotme/ESP32-Course/blob/master/code/WiFi_Web_Server_Outputs/WiFi_Web_Server_Outputs.ino    

 

/********* 

  Rui Santos 

  Complete project details at http://randomnerdtutorials.com   

*********/ 

 

// Load Wi-Fi library 

#include <WiFi.h> 

 

// Replace with your network credentials 

const char* ssid     = ""; 

const char* password = ""; 

 

// Set web server port number to 80 

WiFiServer server(80); 

 

// Variable to store the HTTP request 

String header; 

https://randomnerdtutorials.com/courses
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://github.com/RuiSantosdotme/ESP32-Course/blob/master/code/WiFi_Web_Server_Outputs/WiFi_Web_Server_Outputs.ino


    23 Other Courses – Learn ESP32 with Arduino IDE course  

 

// Auxiliar variables to store the current output state 

String output26State = "off"; 

String output27State = "off"; 

 

// Assign output variables to GPIO pins 

const int output26 = 26; 

const int output27 = 27; 

 

void setup() { 

  Serial.begin(115200); 

  // Initialize the output variables as outputs 

  pinMode(output26, OUTPUT); 

  pinMode(output27, OUTPUT); 

  // Set outputs to LOW 

  digitalWrite(output26, LOW); 

  digitalWrite(output27, LOW); 

 

  // Connect to Wi-Fi network with SSID and password 

  Serial.print("Connecting to "); 

  Serial.println(ssid); 

  WiFi.begin(ssid, password); 

  while (WiFi.status() != WL_CONNECTED) { 

    delay(500); 

    Serial.print("."); 

  } 

  // Print local IP address and start web server 

  Serial.println(""); 

  Serial.println("WiFi connected."); 

  Serial.println("IP address: "); 

  Serial.println(WiFi.localIP()); 

  server.begin(); 

} 

 

void loop(){ 

  WiFiClient client = server.available();   // Listen for incoming clients 

 

  if (client) {                             // If a new client connects, 

    Serial.println("New Client.");          // print a message out in the 

serial port 

    String currentLine = "";                // make a String to hold 

incoming data from the client 

    while (client.connected()) {            // loop while the client's 

connected 

      if (client.available()) {             // if there's bytes to read 

from the client, 

        char c = client.read();             // read a byte, then 

        Serial.write(c);                    // print it out the serial 

monitor 

        header += c; 

        if (c == '\n') {                    // if the byte is a newline 

character 

          // if the current line is blank, you got two newline characters 

in a row. 

          // that's the end of the client HTTP request, so send a response: 

          if (currentLine.length() == 0) { 

            // HTTP headers always start with a response code (e.g. 

HTTP/1.1 200 OK) 

            // and a content-type so the client knows what's coming, then a 

blank line: 

            client.println("HTTP/1.1 200 OK"); 

            client.println("Content-type:text/html"); 

            client.println("Connection: close"); 

            client.println(); 

             

            // turns the GPIOs on and off 

https://randomnerdtutorials.com/courses
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/


    24 Other Courses – Learn ESP32 with Arduino IDE course  

            if (header.indexOf("GET /26/on") >= 0) { 

              Serial.println("GPIO 26 on"); 

              output26State = "on"; 

              digitalWrite(output26, HIGH); 

            } else if (header.indexOf("GET /26/off") >= 0) { 

              Serial.println("GPIO 26 off"); 

              output26State = "off"; 

              digitalWrite(output26, LOW); 

            } else if (header.indexOf("GET /27/on") >= 0) { 

              Serial.println("GPIO 27 on"); 

              output27State = "on"; 

              digitalWrite(output27, HIGH); 

            } else if (header.indexOf("GET /27/off") >= 0) { 

              Serial.println("GPIO 27 off"); 

              output27State = "off"; 

              digitalWrite(output27, LOW); 

            } 

             

            // Display the HTML web page 

            client.println("<!DOCTYPE html><html>"); 

            client.println("<head><meta name=\"viewport\" 

content=\"width=device-width, initial-scale=1\">"); 

            client.println("<link rel=\"icon\" href=\"data:,\">"); 

            // CSS to style the on/off buttons  

            // Feel free to change the background-color and font-size 

attributes to fit your preferences 

            client.println("<style>html { font-family: Helvetica; display: 

inline-block; margin: 0px auto; text-align: center;}"); 

            client.println(".button { background-color: #4CAF50; border: 

none; color: white; padding: 16px 40px;"); 

            client.println("text-decoration: none; font-size: 30px; margin: 

2px; cursor: pointer;}"); 

            client.println(".button2 {background-color: 

#555555;}</style></head>"); 

             

            // Web Page Heading 

            client.println("<body><h1>ESP32 Web Server</h1>"); 

             

            // Display current state, and ON/OFF buttons for GPIO 26   

            client.println("<p>GPIO 26 - State " + output26State + "</p>"); 

            // If the output26State is off, it displays the ON 

button        

            if (output26State=="off") { 

              client.println("<p><a href=\"/26/on\"><button 

class=\"button\">ON</button></a></p>"); 

            } else { 

              client.println("<p><a href=\"/26/off\"><button class=\"button 

button2\">OFF</button></a></p>"); 

            } 

                

            // Display current state, and ON/OFF buttons for GPIO 27   

            client.println("<p>GPIO 27 - State " + output27State + "</p>"); 

            // If the output27State is off, it displays the ON 

button        

            if (output27State=="off") { 

              client.println("<p><a href=\"/27/on\"><button 

class=\"button\">ON</button></a></p>"); 

            } else { 

              client.println("<p><a href=\"/27/off\"><button class=\"button 

button2\">OFF</button></a></p>"); 

            } 

            client.println("</body></html>"); 

             

            // The HTTP response ends with another blank line 

            client.println(); 

            // Break out of the while loop 

https://randomnerdtutorials.com/courses
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/


    25 Other Courses – Learn ESP32 with Arduino IDE course  

            break; 

          } else { // if you got a newline, then clear currentLine 

            currentLine = ""; 

          } 

        } else if (c != '\r') {  // if you got anything else but a carriage 

return character, 

          currentLine += c;      // add it to the end of the currentLine 

        } 

      } 

    } 

    // Clear the header variable 

    header = ""; 

    // Close the connection 

    client.stop(); 

    Serial.println("Client disconnected."); 

    Serial.println(""); 

  } 

} 

Setting Your Network Credentials 

You need to modify the following lines with your network credentials: SSID and password. 

The code is well commented on where you should make the changes. 

// Replace with your network credentials 

const char* ssid     = ""; 

const char* password = ""; 

Finding the ESP32 IP Address 

Now, you can upload the code, and it will work straight away. Don’t forget to check if you 

have the right board and COM port selected, otherwise you’ll get an error when trying to 

upload. Open the Serial Monitor at a baud rate of 115200. 

 

The ESP32 connects to Wi-Fi, and outputs the ESP IP address on the Serial Monitor. Copy 

that IP address, because you need it to access the ESP32 web server. 

 

Note: if nothing shows up in the Serial Monitor, press the ESP32 “EN” button (enable 

button next to the micro USB port). 

  

https://randomnerdtutorials.com/courses
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/


    26 Other Courses – Learn ESP32 with Arduino IDE course  

Accessing the Web Server 

Open your browser, paste the ESP32 IP address, and you’ll see the following page. 

 

If you take a look at the Serial Monitor, you can see what’s going on on the background. 

The ESP32 receives an HTTP request from a new client (in this case, your browser). 

You can also see other information about the HTTP request, the HTTP header fields that 

define the operating parameters of an HTTP transaction. 

 

  

https://randomnerdtutorials.com/courses
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/


    27 Other Courses – Learn ESP32 with Arduino IDE course  

Testing the Web Server 

Let’s test the web server. Click the button to turn GPIO 26 ON. You can see on the Serial 

Monitor that the ESP32 receives a request on the /26/on URL. 

 

When the ESP receives that request, it turns the LED attached to GPIO 26 ON, and its state 

is also updated on the web page. 

 

Test the button for GPIO 27 and see that it works similarly. 

How the code Works 

Now, let’s take a closer look at the code to see how it works, so that you are able to modify 

it to fulfill your needs. 

The first thing you need to do is to include the WiFi library. This is the same library used 

to create a web server with the Arduino using the Ethernet shield. 

// Load Wi-Fi library 

#include <WiFi.h> 

https://randomnerdtutorials.com/courses
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/


    28 Other Courses – Learn ESP32 with Arduino IDE course  

As mentioned previously, you need to insert your ssid and password in the following lines 

inside the double quotes. 

const char* ssid     = ""; 

const char* password = ""; 

Then, you set your web server to port 80. 

WiFiServer server(80); 

The following line creates a variable to store the header of the HTTP request: 

String header; 

Next, you create auxiliary variables to store the current state of your outputs. If you want 

to add more outputs and save its state, you need to create more variables. 

// Auxiliar variables to store the current output state 

String output26State = "off"; 

String output27State = "off"; 

You also need to assign a GPIO to each of your outputs. Here we are using GPIO 26 and 

GPIO 27. You can use any other suitable GPIOs. 

// Assign output variables to GPIO pins 

const int output26 = 26; 

const int output27 = 27; 

setup() 

Now, let’s go into the setup(). The setup() function only runs once when your ESP first 

boots. 

First, we start a serial communication at a baud rate of 115200 for debugging purposes. 

Serial.begin(115200); 

You also define your GPIOs as OUTPUTs and set them to LOW. 

// Initialize the output variables as outputs 

pinMode(output26, OUTPUT); 

pinMode(output27, OUTPUT); 

// Set outputs to LOW 

digitalWrite(output26, LOW); 

digitalWrite(output27, LOW); 

The following lines begin the Wi-Fi connection with WiFi.begin(ssid, password), wait 

for a successful connection and print the ESP IP address in the Serial Monitor. 

Serial.print("Connecting to "); 

Serial.println(ssid); 

WiFi.begin(ssid, password); 

while (WiFi.status() != WL_CONNECTED) { 

  delay(500); 

https://randomnerdtutorials.com/courses
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/


    29 Other Courses – Learn ESP32 with Arduino IDE course  

  Serial.print("."); 

} 

// Print local IP address and start web server 

Serial.println(""); 

Serial.println("WiFi connected."); 

Serial.println("IP address: "); 

Serial.println(WiFi.localIP()); 

server.begin(); 

loop() 

In the loop() we program what happens when a new client establishes a connection with 

the web server. 

The ESP is always listening for incoming clients with this line: 

WiFiClient client = server.available();   

When a request is received from a client, we’ll save the incoming data. The while loop that 

follows will be running as long as the client stays connected. We don’t recommend 

changing the following part of the code unless you know exactly what you are doing. 

if (client) {                    // If a new client connects, 

  Serial.println("New Client."); // print a message out in the serial port 

  String currentLine = "";      // make a String to hold incoming data 

  while (client.connected()) {  // loop while the client's connected 

    if (client.available()) {   // if there's bytes to read from client 

      char c = client.read();   // read a byte, then 

      Serial.write(c);          // print it out the serial monitor 

      header += c; 

      if (c == '\n') {          // if the byte is a newline character 

        // if line is blank, you got two newline characters in a row. 

        // that's the end of the client HTTP request, so send a response: 

        if (currentLine.length() == 0) { 

       // HTTP headers start with a response code (e.g. HTTP/1.1 200 OK) 

       // and a content-type so the client knows what's coming 

            client.println("HTTP/1.1 200 OK"); 

            client.println("Content-type:text/html"); 

            client.println("Connection: close"); 

            client.println(); 

The next section of if and else statements checks which button was pressed in your 

web page, and controls the outputs accordingly. As we’ve seen previously, we make a 

request on different URLs depending on the button we press. 

// turns the GPIOs on and off 

if (header.indexOf("GET /26/on") >= 0) { 

  Serial.println("GPIO 26 on"); 

  output26State = "on"; 

  digitalWrite(output26, HIGH); 

} else if (header.indexOf("GET /26/off") >= 0) { 

  Serial.println("GPIO 26 off"); 

  output26State = "off"; 

  digitalWrite(output26, LOW); 

} else if (header.indexOf("GET /27/on") >= 0) { 

  Serial.println("GPIO 27 on"); 

  output27State = "on"; 

  digitalWrite(output27, HIGH); 

} else if (header.indexOf("GET /27/off") >= 0) { 

https://randomnerdtutorials.com/courses
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/


    30 Other Courses – Learn ESP32 with Arduino IDE course  

  Serial.println("GPIO 27 off"); 

  output27State = "off"; 

  digitalWrite(output27, LOW); 

} 

 

For example, if you’ve pressed the GPIO 26 ON button, the ESP receives a request on the 

/26/ON URL, and we receive that information on the HTTP header. So, we can check if the 

header contains the expression GET /26/on. If it contains, it will print a message on the 

Serial Monitor, it will change the output26statevariable to ON, and turns the LED on. 

This works similarly for the other buttons. So, if you want to add more outputs, you should 

modify this part of the code to include them. 

Displaying the HTML web page 

The next thing you need to do, is creating the web page. The ESP32 will be sending a 

response to your browser with some HTML code to build the web page. 

Note: in Unit 3 and Unit 4, you’ll learn about HTML and CSS basics, so that you can easily 

modify the web page to fulfill your needs. 

The web page is sent to the client using this expressing client.println(). You should 

enter what you want to send to the client as an argument. 

The first thing we should send is always the following line that indicates that we are 

sending HTML. 

<!DOCTYPE HTML><html> 

Then, the following line makes the web page responsive in any web browser. 

client.println("<head><meta name=\"viewport\" content=\"width=device-

width, initial-scale=1\">"); 

And the following is used to prevent requests on the favicon. – You don’t need to worry 

about this line. 

client.println("<link rel=\"icon\" href=\"data:,\">"); 

Styling the Web Page 

Next, we have some CSS text to style the buttons and the web page appearance. We 

choose the Helvetica font, define the content to be displayed as a block and aligned at the 

center. 

client.println("<style>html { font-family: Helvetica; display: 

inline-block; margin: 0px auto; text-align: center;}"); 

We style our buttons with the #4CAF50 color, without border, text in white color, and with 

this padding: 16px 40px. We also set the text-decoration to none, define the font size, the 

margin, and the cursor to a pointer. 

client.println(".button { background-color: #4CAF50; border: none; color: 

white; padding: 16px 40px;"); 

https://randomnerdtutorials.com/courses
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/


    31 Other Courses – Learn ESP32 with Arduino IDE course  

client.println("text-decoration: none; font-size: 30px; margin: 2px; 

cursor: pointer;}"); 

We also define the style for a second button, with all the properties of the button we’ve 

defined earlier, but with a different color. This will be the style for the off button. 

client.println(".button2{background-color:#555555;}</style></head>"); 

Setting the Web Page First Heading 

In the next line you can set the first heading of your web page. Here we have “ESP32 Web 

Server”, but you can change this text to whatever you like. 

// Web Page Heading 

client.println("<body><h1>ESP32 Web Server</h1>"); 

Displaying the Buttons and Corresponding State 

Then, you write a paragraph to display the GPIO 26 current state. As you can see we use 

the output26Statevariable, so that the state updates instantly when this variable changes. 

client.println("<p>GPIO 26 - State " + output26State + "</p>"); 

 

Then, we display the on or the off button, depending on the current state of the GPIO. If 

the current state of the GPIO is off, we show the ON button, if not, we display the OFF 

button. 

if (output27State=="off") { 

  client.println("<p><a href=\"/27/on\"><button 

class=\"button\">ON</button></a></p>"); 

} else { 

  client.println("<p><a href=\"/27/off\"><button class=\"button 

button2\">OFF</button></a></p>"); 

} 

We use the same procedure for GPIO 27. 

Closing the Connection 

Finally, when the response ends, we clear the header variable, and stop the connection 

with the client with client.stop(). 

// Clear the header variable 

header = ""; 

// Close the connection 

client.stop(); 

Wrapping Up 

Now that you know how the code works, you can modify the code to add more outputs, 

or modify your web page. To modify your web page you may need to know some HTML 

and CSS basics.  

Thanks for reading this mini project ebook. If you liked this ebook you’ll surely like our 

“Learn ESP32 with Arduino IDE” course. 

https://randomnerdtutorials.com/courses
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/


    32 Other Courses – Learn ESP32 with Arduino IDE course  

Learn ESP32 with Arduino IDE Course 

Learn ESP32 with Arduino IDE is a practical course where you’ll learn how to take the most 

out of the ESP32 using the Arduino IDE. This is our complete guide to program the ESP32 

with Arduino IDE, including projects, tips, and tricks! 

 

GET ACCESS TO THE COURSE HERE »» 

What's inside the course? 

The course contains 8 Modules to take the most out of the ESP32. We'll start by 

introducing the ESP32 main features and explore its GPIOs. We'll also cover a variety of 

subjects related with IoT like Web Servers, Bluetooth Low Energy (BLE), LoRa, and MQTT. 

Each subject contains practical examples with schematics and code. 

Here’s what you’ll have access with this course: 

 Course dashboard with video, code, schematics, and transcripts 

 All 8 Modules (downloadable eBook in PDF format with 510 pages) 

 Module #8 includes 4 advanced ESP32 Projects 

 Watch and Download the Video Course 

 Source Code + Schematics 

 Unlimited Updates 

 Exclusive access to a private Forum to ask questions 

 Exclusive access to our Facebook group community 

https://randomnerdtutorials.com/courses
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/#sign-up


    33 Other Courses – Learn ESP32 with Arduino IDE course  

Course Modules 

This course contains 7 Modules and 4 Projects. Scroll down to take a look at the Modules 

and Projects covered in the course. 

Module #1: Getting Started with ESP32 

 

This first Module is an introduction to the ESP32 board. We'll explore its features, and 

show you how to use your board with this course. You'll also prepare your Arduino IDE to 

upload code to the ESP32. 

 Unit 1: Introducing ESP32 

 Unit 2: Installing the ESP32 Board in Arduino IDE (Windows, Mac OS X, and Linux) 

 Unit 3: How To Use Your ESP32 Board with this Course 

 Unit 4: Make the ESP32 Breadboard Friendly 

Module #2: Exploring the ESP32 GPIO Pins 

 

In this Module we'll explore the ESP32 GPIO functions. We'll show you how to control 

digital outputs, create PWM signals, and read digital and analog inputs. We'll also take a 

look at the ESP32 touch capacitive pins and the built-in hall effect sensor.  

https://randomnerdtutorials.com/courses
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/


    34 Other Courses – Learn ESP32 with Arduino IDE course  

 Unit 1: ESP32 Digital Inputs and Outputs 

 Unit 2: ESP32 Touch Sensor 

 Unit 3: ESP32 Pulse-Width Modulation (PWM) 

 Unit 4: ESP32 Reading Analog Inputs 

 Unit 5: ESP32 Hall Effect Sensor 

 Unit 6: ESP32 with PIR Motion Sensor - Interrupts and Timers 

 Unit 7: ESP32 Flash Memory - Store Permanent Data (Write and Read) 

 Unit 8: Other ESP32 Sketch Examples 

Module #3: ESP32 Deep Sleep Mode 

 

Using deep sleep in your ESP32 is a great way to save power in battery-powered 

applications. In this Module we'll show you how to put your ESP32 into deep sleep mode 

and the different ways to wake it up. Units in this Module: 

 Unit 1: ESP32 Deep Sleep Mode 

 Unit 2: Deep Sleep - Timer Wake Up 

 Unit 3: Deep Sleep - Touch Wake Up 

 Unit 4: Deep Sleep - External Wake Up 

Module #4: Building Web Servers with the ESP32 

 

This Module explains how to build several web servers with the ESP32. After explaining 

some theoretical concepts, you'll learn how to build a web server to display sensor 

readings, to control outputs, and much more. You'll also learn how you can edit your web 

server interface using HTML and CSS.  

https://randomnerdtutorials.com/courses
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/


    35 Other Courses – Learn ESP32 with Arduino IDE course  

 Unit 1: ESP32 Web Server - Introduction 

 Unit 2: ESP32 Web Server - Control Outputs 

 Unit 3: ESP32 Web Server - HTML and CSS Basics (Part 1/2) 

 Unit 4: ESP32 Web Server - HTML in Arduino IDE (Part 2/2) 

 Unit 5: ESP32 Web Server – Control Outputs (Relay) 

 Unit 6: Making Your ESP32 Web Server Password Protected 

 Unit 7: Accessing the ESP32 Web Server From Anywhere 

 Unit 8: ESP32 Web Server – Display Sensor Readings 

 Unit 9: ESP32 Control Servo Motor Remotely (Web Server) 

Module #5: ESP32 Bluetooth Low Energy 

 

The ESP32 comes not only with Wi-Fi, but it also has Bluetooth and Bluetooth Low Energy 

built-in. Learn how to use the ESP32 Bluetooth functionalities to scan nearby devices and 

exchange information (BLE client and server). Units in this Module: 

 Unit 1: ESP32 Bluetooth Low Energy (BLE) - Introduction 

 Unit 2: Bluetooth Low Energy - Notify and Scan 

 Unit 3: ESP32 BLE Server and Client (Part 1/2) 

 Unit 4: ESP32 BLE Server and Client (Part 2/2) 

Module #6: LoRa Technology with the ESP32 

 

https://randomnerdtutorials.com/courses
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/


    36 Other Courses – Learn ESP32 with Arduino IDE course  

LoRa is a long range wireless technology. In this Module you'll explore what's LoRa and 

how you can use it with the ESP32 to extend the communication range between IoT 

devices. Units in this Module: 

 Unit 1: ESP32 with LoRa - Introduction 

 Unit 2: ESP32 LoRa Sender and Receiver 

 Unit 3: Further Reading about LoRa Gateways 

 Unit 4: LoRa - Where to Go Next? 

Module #7: ESP32 with MQTT 

 

MQTT stands for Message Queuing Telemetry Transport. It is a lightweight publish and 

subscribe system perfect for Internet of Things applications. In this module you'll learn 

how to use MQTT to establish a communication between two ESP32 boards, and how you 

can control the ESP32 using Node-RED. Units in this Module: 

 Unit 1: ESP32 with MQTT – Introduction 

 Unit 2: Installing Mosquitto MQTT Broker on a Raspberry Pi 

 Unit 3: MQTT Project – MQTT Client ESP32 #1 

 Unit 4: MQTT Project – MQTT Client ESP32 #2 

 Unit 5: Installing Node-RED and Node-RED Dashboard on a Raspberry Pi 

 Unit 6: Connect ESP32 to Node-RED using MQTT 

Project #1: ESP32 Wi-Fi Multisensor – Temperature, Humidity, 

Motion, Luminosity, and Relay Control 

 

https://randomnerdtutorials.com/courses
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/


    37 Other Courses – Learn ESP32 with Arduino IDE course  

In this project you'll build an ESP32 Wi-Fi Multisensor. This device consists of a PIR 

motion sensor, a light dependent resistor (LDR), a DHT22 temperature and humidity 

sensor, a relay, and a status RGB LED. You'll also build a web server that allows you to 

control the ESP32 multisensor using different modes. Units in this project: 

 Unit 1:  ESP32 Wi-Fi Multisensor - Temperature, Humidity, Motion, Luminosity, 

and Relay Control 

 Unit 2: ESP32 Wi-Fi Multisensor - How the Code Works? 

Project #2: Remote Controlled Wi-Fi Car Robot 

 

In this project we’ll show you step by step how to create an ESP32 Wi-Fi remote 

controlled car robot. Units in this project: 

 Unit 1: Remote Controlled Wi-Fi Car Robot - Part 1/2 

 Unit 2: Remote Controlled Wi-Fi Car Robot - Part 2/2 

 Unit 3: Assembling the Smart Robot Car Chassis Kit 

 Unit 4: Extra - Access Point (AP) For Wi-Fi Car Robot 

Project #3: Bluetooth Low Energy (BLE) Android Application with 

MIT App Inventor – Control Outputs and Display Sensor Readings 

 

In this project you’re going to create an Android application to interact with the ESP32 

using Bluetooth Low Energy (BLE). Units in this project: 

https://randomnerdtutorials.com/courses
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/


    38 Other Courses – Learn ESP32 with Arduino IDE course  

 Unit 1: ESP32 BLE Android Application – Control Outputs and Display Sensor 

Readings 

 Unit 2: Bluetooth Low Energy (BLE) Android Application with MIT App Inventor 2 – 

How the App Works? 

Project #4: LoRa Long Range Sensor Monitoring – Reporting 

Sensor Readings from Outside: Soil Moisture and Temperature 

 

In this project you’re going to build an off-the-grid monitoring system that sends soil 

moisture and temperature readings to and indoor receiver. To establish a communication 

between the sender and the receiver we’ll be using LoRa communication protocol. Units 

in this project: 

 Unit 1: LoRa Long Range Sensor Monitoring and Data Logging 

 Unit 2: ESP32 LoRa Sender 

 Unit 3: ESP32 LoRa Receiver 

 Unit 4: ESP32 LoRa Sender Solar Powered 

 Unit 5: Final Tests, Demonstration, and Data Analysis 

 

 
Get Access to “ Learn ESP32 with Arduino IDE” 

randomnerdtutorials.com/learn-esp32-with-arduino-ide 

https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://randomnerdtutorials.com/courses
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://rntlab.com/lora-long-range-sensor-monitoring-and-data-logging-part-1/
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/
https://randomnerdtutorials.com/learn-esp32-with-arduino-ide/

