
G H I E l e c t r o n i c s

G80 SoC User Manual
Rev. 0.01 May 5, 2015 User Manual

G80 System on Chip

Document Information

Information Description

Abstract This document covers information about the G80 SoC,
specifications, tutorials and references.

GHI Electronics,LLC G80 SoC User Manual

Rev. 0.01 Page 2 of 51 www.GHIElectronics.com

Revision History

Rev No. Date Modification

Rev. 0.01 8/26/14 Preliminary version.

*** This is a preliminary version ***

http://www.ghielectronics.com/

GHI Electronics,LLC G80 SoC User Manual

Table of Contents

Table of Contents
1.Introduction...4

1.1.G80 SoC Key Features...4
1.2.Example Applications..4
1.3.The .NET Micro Framework..5
1.4.GHI Electronics and NETMF...6

2.The Hardware...7
2.1. Microcontroller..7

3.Pin-Out Description...8
3.1.Pin-out Table ...8

4.G80 SoC on boot up...12
5.The GHI Boot Loader..13

5.1.The Commands...13
6.NETMF TinyCLR (firmware)...14

6.1.Assemblies Version Matching...14
6.2.Deploying to the Emulator...15
6.3.Deploying to the G80 SoC...16
6.4.Targeting Different Versions of the Framework.................17

7.The Libraries...19
7.1.Finding NETMF Library Documentation............................20
7.2.Loading Assemblies...20

8.The G80 Dev Board..22
8.1.Digital Inputs/Outputs..23

Interrupt Pins...26
8.2. Analog Inputs/Outputs..27
8.3.PWM..27
8.4.Signal Generator...28
8.5.Signal Capture...28
8.6.Serial Port (UART)...30
8.7.SPI...31
8.8.I2C...32
8.9.CAN...33

8.10.One-wire..34
8.11.Graphics...34

Fonts..36
Glide..36

8.12.USB Host...37
8.13.Accessing Files and Folders...38

SD/MMC Memory..40
USB Mass Storage..40

8.14.Networking (TCP/IP)..40
The Extensions..40
MAC address setting...40
IP address (DHCP or static):...41
Ethernet...42
Wireless LAN WiFi..43

8.15.PPP..43
8.16.USB Client (Device) ..43
8.17.Extended Weak References (EWR)................................44
8.18.Real Time Clock..44
8.19.Watchdog...46
8.20.Power Control..46

9.Advanced use of the Microcontroller ...49
9.1.Register...49
9.2.AddressSpace...49
9.3.Battery RAM..49
9.4.EEPROM...49
9.5.Runtime Loadable Procedure..49

10.design Consideration..50
Legal Notice...51

Licensing..51
Disclaimer..51

G80 SoC Page 3 of 51 www.ghielectronics.com

GHI Electronics,LLC G80 SoC User Manual

Introduction

1. Introduction
The G80 SoC is a powerful, yet low-cost, surface-mount System on Chip (SoC) running
the .NET Micro Framework software, which enables the SoC to be programmed from
Microsoft's Visual Studio, through a USB cable. Programming in a modern managed
language, such as C# and Visual Basic, allows developers to accomplish much more work in
less time by taking advantage of the extensive built-in libraries for networking, file systems,
graphical interfaces and many peripherals.

A simple two layer circuit, with just power and some connectors, can utilize the G80 SoC to
bring the latest technologies to any products. There are no additional licensing or fees and all
the development tools and SDKs are freely available.

1.1. G80 SoC Key Features

● .NET Micro Framework
● 168 MHz ARM Cortex-M4 processor
● 256 KB RAM
● 1 MB FLASH
● Embedded LCD controller
● 78 GPIO Pins
● 78 Interrupt Inputs
● 2 SPI
● I2C
● 4 UART
● 2 CAN Channels
● 16 12-Bit Analog Input
● 2 12-Bit Analog Output
● 4Bit SD/MMC Memory card interface
● 26 PWM
● 112 mA max @ 25ºC
● 1.5 mA Hibernate Mode
● -40ºC to +105ºC Operational
● RoHS Lead Free
● Dimensions: (16.7 mm x 16.7 mm)

● TCP/IP Stack (.NET sockets)
● PPP
● USB Host
● Graphics (image, font and controls)
● File System (SD and USB Sticks)

1.2. Example Applications

● Measurement tools and testers

Rev. 0.01 Page 4 of 51 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC G80 SoC User Manual

Introduction

● Networked sensors
● Robotics
● Central alarm system
● Smart appliances
● Industrial automation devices

1.3. The .NET Micro Framework

Inspired by its full .NET Framework, Microsoft developed a lightweight version called .NET
Micro Framework (NETMF).

NETMF focuses on the specific requirements of resource-constrained embedded systems.
Development, debugging and deployment is conveniently performed using Microsoft's
powerful Visual Studio tools, all through standard USB cable.

Programming is done in C# or Visual Basic. This includes libraries to cover sockets for
networking, modern memory management with garbage collector and multitasking services.
In addition to supporting standard .NET features, NETMF has embedded extensions
supporting:

● General Purpose IO (GPIO with interrupt handling

● Analog input/output

● Standard buses such I2C, SPI, USB, Serial (UART)

● PWM

● Networking

● File System

● Display graphics, supporting images, fonts and controls.

Rev. 0.01 Page 5 of 51 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC G80 SoC User Manual

Introduction

1.4. GHI Electronics and NETMF

For years, GHI Electronics has been the lead Microsoft partner on .NET Micro Framework
(NETMF). The core NETMF was also extended with new exclusive libraries for an additional
functionality, such as USB Host.

One of the important extensions by GHI Electronics is Runtime Loadable Procedures (RLP),
allowing native code (Assembly/C) to be compiled and loaded right from withing managed
code (C#/Visual Basic) to handle time critical and processor intensive tasks. IT can also be
used to add new native extensions to the system.

As for networking, WiFi and PPP libraries are added by GHI Electronics to the NETMF core.
Combined with Ethernet and the other managed services, it is a complete toolbox for the
internet of things.

All the mentioned features are loaded and tested on the G80 SoC. GHI Electronics
continuously maintains, upgrades and solves any of the issues on the G80 SoC firmware, to
provide regular and free releases. Users can simply load the new software on the G80 SoC
using USB or Serial, and even use the in-field-update feature. This feature allows the upgrade
to be done through any of the available interface, including file system and networking.

Rev. 0.01 Page 6 of 51 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC G80 SoC User Manual

The Hardware

2. The Hardware
The G80 SoC core components includes the processor, 1MB flash, and 256KB RAM.

The small, 38.1 x 26.7 x 3.55 mm (only 1 x 1.5 inches), module contains everything needed to
run a complex embedded-system in a cost-effective and flexible solution. All that is needed is
a 3.3V power source and some connections to take advantage of the G80 SoC's long list of
available features.

2.1. Microcontroller

The microcontroller is the heart of G80 SoC. Running at 180Mhz, 32Bit, Cortex-M4 and
includes a long list of available peripherals. The NETMF core libraries, combined with the GHI
Electronics extensions, provide a long list of methods to access the available peripherals.

Rev. 0.01 Page 7 of 51 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC G80 SoC User Manual

Pin-Out Description

3. Pin-Out Description
Many signals on the G80 SoC are multiplexed to offer multiple functions on a single pin.
Developers can decide on the pin functionality through the provided libraries. These are some
important facts pertaining to the available pins:

Advanced details on all pins can be found in the STM32F427 datasheet.

3.1. Pin-out Table

G80 GPIO Multiplexed Function(s) Notes

1 PE2

2 PE3 LDR0

3 PE4 LDR1

4 PE5

5 PE6

6 VBAT

7 PC13

8 PC14 32 KHz IN RTC Crystal

9 PC15 32 kHz OUT

10 GND

11 3.3V

12 PH0 12MHz IN Main Crystal

13 PH1 12MHz OUT

14 RESET Active low, not 5V tolerant.

15 PC0 ADC10

16 PC1 ADC11

17 PC2 ADC12, SPI2 MISO

18 PC3 ADC13, SPI2 MOSI

19 3.3V

20 GND

Rev. 0.01 Page 8 of 51 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC G80 SoC User Manual

Pin-Out Description

G80 GPIO Multiplexed Function(s) Notes

21 VREF+ (3.3V)

22 3.3V This power source is for the
internal analog circuitry.

23 PA0 ADC0, COM4 TX

24 PA1 ADC1, COM4 RX

25 PA2 ADC2, PWM20

26 PA3 ADC3, PWM21

27 GND

28 3.3V

29 PA4 ADC4, DAC1 Not 5V tolerant.

30 PA5 ADC5, DAC2 Not 5V tolerant.

31 PA6 ADC6, PWM24

32 PA7 ADC7, PWM25

33 PC4 ADC14

34 PC5 ADC15

35 PB0 ADC8, PWM10

36 PB1 ADC9, PWM11

37 PB2

38 PE7

39 PE8

40 PE9 PWM0

41 PE10

42 PE11 PWM1

43 PE12

44 PE13 PWM2

45 PE14 PWM3

46 PE15 MODE (debug interface) High=USB, Low=COM1

47 PB10 PWM6, SPI2 SCK

48 PB11 PWM7

Rev. 0.01 Page 9 of 51 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC G80 SoC User Manual

Pin-Out Description

G80 GPIO Multiplexed Function(s) Notes

49 VCAP1 Connect to a 2.2uF
capacitor.

50 3.3V

51 PB12 CAN2 RD

52 PB13 CAN2 TD

53 PB14 USB Host D-

54 PB15 USB Host D+

55 PD8 COM3 TX

56 PD9 COM3 RX

57 PD10

58 PD11 COM3 CTS

59 PD12 COM3 RTS

60 PD13 PWM13

61 PD14 PWM14

62 PD15 PWM15

63 PC6 PWM16

64 PC7 PWM17

65 PC8 PWM18, SD D0

66 PC9 PWM19, SD D1

67 PA8 MCO

68 PA9 COM1 TX

69 PA10 COM1 RX

70 PA11 USB Device D-

71 PA12 USB Device D+

72 PA13

73 VCAP2 Connect to a 2.2uF
capacitor.

74 GND

75 3.3V

Rev. 0.01 Page 10 of 51 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC G80 SoC User Manual

Pin-Out Description

G80 GPIO Multiplexed Function(s) Notes

76 PA14

77 PA15 PWM4

78 PC10 SD D2

79 PC11 SD D3

80 PC12 SD CLK

81 PD0 CAN1 RD

82 PD1 CAN1 TD

83 PD2 SD CMD

84 PD3 COM2 CTS

85 PD4 COM2 RTS

86 PD5 COM2 TX

87 PD6 COM2 RX

88 PD7

89 PB3 PWM5, SPI1 SCK

90 PB4 PWM8, SPI1 MISO

91 PB5 PWM9, SPI1 MOSI

92 PB6 I2C SCL

93 PB7 I2C SDA

94 Reserved

95 PB8 PWM22

96 PB9 PWM23

97 PE0

98 PE1

99 GND

100 3.3V

All pins are 5V tolerant if not otherwise is stated.

Rev. 0.01 Page 11 of 51 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC G80 SoC User Manual

G80 SoC on boot up

4. G80 SoC On Boot Up
To be added.

Rev. 0.01 Page 12 of 51 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC G80 SoC User Manual

The GHI Boot Loader

5. The GHI Boot Loader
The GHI Boot Loader software is pre-loaded and locked on the G80 SoC. It is used to update
the firmware and can be used to do a complete erase all flash memory. The GHI boot loader
is rarely needed but it is recommended to keep access available in all project designs.

The GHI boot loader accepts simple commands sent with the help of a terminal service
software, such as TeraTerm or Hyper Terminal. A command character is sent and the boot
loader performs an action; results are returned in a human friendly format followed by a "BL"
indicating that the boot loader is ready for the next command. All commands and responses
use ASCII encoded characters.

The G80 SoC on boot up section provides the required information on how to choose the
access interface and how to access the GHI boot loader.

5.1. The Commands

Command Description Notes

V Returns the GHI Loader
version number.

Format X.XX
e.g. 1.06

E Erases the Flash memory Confirm erase by sending Y or any other character to abort.
This command erases TinyBooter, the G80 firmware and the user's
application.

X Loads the new
TinyBooter file

Error: Reference source not found section explains this command
process in more detail.

R Runs firmware. Exits the GHI boot loader mode and runs TinyBooter.

B Changes the baud rate to
921600

User needs to change the baud rate on the terminal service
accordingly. Available on serial access interface only.

Notes:
● Commands are not followed by pressing the “ENTER” key. The single command letter is sent to the G80

SoC; which immediately begins executing the command.
● The Boot loader commands are case sensitive.

… To be completed!

Rev. 0.01 Page 13 of 51 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC G80 SoC User Manual

NETMF TinyCLR (firmware)

6. NETMF TinyCLR (firmware)
The Firmware is the main piece of embedded software running on the G80 SoC. It is what
interprets and runs the user's managed application and it is what Microsoft's Visual Studio
use to deploy, hook-into and debug the managed application. As explained in Error:
Reference source not found section, hardware interfaces between TinyCLR and the host
development system is either USB or Serial. In this chapter the examples use the USB
interface.

If necessary, the module's firmware can be updated as described in the Error: Reference
source not found chapter.

6.1. Assemblies Version Matching

The firmware includes extensions added by GHI Electronics. These extensions are often
improved and further extended. If the managed application (C# or Visual Basic) uses any of
the GHI specific extensions, care must be taken when a new SDK is installed.

This is due to the fact that the existing Visual Studio projects will include a local copy of the
assemblies supplied by the old SDK; during compilation of the application, the extensions
may not match what is found.

Additionally, the assemblies themselves are compiled for use with specific SDK versions.

For example where an application was previously compiled with 4.2, then the 4.3 SDK is
installed; even if a successful compilation occurs (no extension conflicts were found), then the
deployment process will begin to load 4.2 assemblies; this will cause loading errors when
compiling for 4.3. This will not harm the G80 SoC. Visual Studio's Output panel will contain
something like:

there is further discussions of assemblies in the Loading Assemblies section of chapter 7.

Rev. 0.01 Page 14 of 51 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC G80 SoC User Manual

NETMF TinyCLR (firmware)

6.2. Deploying to the Emulator

Once the latest SDK is installed and the G80 SoC is loaded with the latest TinyBooter and
NETMF TinyCLR, using Visual Studio to load/debug C# and Visual Basic application is very
easy. If not installed yet, the latest SDK should be downloaded and installed on the
development machine. The following link points to a page on the GHI Electronics website that
shows what software components are necessary to install along with the latest SDK
www.ghielectronics.com/support/netmf

When done, Visual Studio can be started to create a new Micro Framework project Console
Application.

C# is selected in this example but Visual Basic will be very similar. Run the code as is by
pressing F5 or clicking the start button. This should open up the emulator and run the
program. This program prints “Hello World” on the output window, not on the screen. If the
output window is not visible, it can be opened from the “VIEW” top menu. When running the
emulator has a pre-developed device that appears. The program closes when done causing
the emulator device to close. The output window of Visual Studio should be full of messages...
from loading assemblies (libraries) on power up to loading the application, to the actual “Hello

Rev. 0.01 Page 15 of 51 www.GHIElectronics.com

http://www.ghielectronics.com/
http://www.ghielectronics.com/support/netmf

GHI Electronics,LLC G80 SoC User Manual

NETMF TinyCLR (firmware)

World!.”

Now view open the program that was created automatically, Program.cs:

Change the program to the following.

using System;
using Microsoft.SPOT;

public class Program
{
 public static void Main()
 {
 Debug.Print("* Amazing! *");
 }

}

Press the F5 key. The output window will now show something similar to the following image.

6.3. Deploying to the G80 SoC

This section relies on the work done in the previous section as loading to the actual hardware
device is exactly the same as loading to the emulator. The only difference is in selecting the

Rev. 0.01 Page 16 of 51 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC G80 SoC User Manual

NETMF TinyCLR (firmware)

device instead of the emulator. This is done by going to the project properties:

In this example, the G80 SoC is connected to the PC using the USB interface (see Error:
Reference source not found section). To deploy the application to the module select USB for

“Transport.”

Running the application (F5 key) will load the exact same program on the G80 SoC and then
run it. The output window of Visual Studio will still show very similar messages but they are

now coming from the G80 SoC directly.

If necessary, the deployed program can use the full power of the Visual Studio debugger;
including, stepping through lines, inspecting variables, setting breakpoints, etc.

6.4. Targeting Different Versions of the Framework

There are times when it may be useful to compile and deploy applications for an older version
of the SDK. For example, if there is a module with older firmware and there is an older
application that needs to be deployed. GHI Electronics and Microsoft makes this easy by
shipping the previous version of the framework as part of the current package. Under Project
Properties, use the Application panel to target the desired version:

Rev. 0.01 Page 17 of 51 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC G80 SoC User Manual

NETMF TinyCLR (firmware)

Rev. 0.01 Page 18 of 51 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC G80 SoC User Manual

The Libraries

7. The Libraries
Similar to the full desktop .NET, NETMF includes many services to help in modern application
development. One example would be threading. This is typically very difficult to deal with on
embedded systems, but thanks to NETMF, this is very easy and works as well as it does on a
desktop application.

using System;
using System.Threading;
using Microsoft.SPOT;

public class Program
{
 // We will print a counter every 1 second
 static int Count=0;
 static void CounterThread()
 {
 while (true)// Infinite loop
 {
 Thread.Sleep(1000);// Wait for 1 second
 Count++;// Increment the count
 Debug.Print("Count = " + Count);// Print the count
 }
 }
 // **
 static void Main()
 {
 //Create a second thread, main is automatically a thread
 Thread EasyThread = new Thread(CounterThread);
 EasyThread.Start();// Run the Counter Thread

 // We can now do anything we like
 // We will print Hi once every 2 seconds
 while (true)// Infinite loop
 {
 Debug.Print("Hi");
 Thread.Sleep(2000);
 }
 }
}

The output from the earlier program will look similar to this:

Hi
Count = 1
Hi

Rev. 0.01 Page 19 of 51 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC G80 SoC User Manual

The Libraries

Count = 2
Count = 3
Hi
Count = 4
Count = 5
Hi
Count = 6

7.1. Finding NETMF Library Documentation

While this user manual is not meant to be a tutorial on the use of NETMF, a lot of details are
provided to aid newcomers to NETMF. For further details, see the documentation library on
the GHI website. Also, the main support page for NETMF includes links to the library
reference documentation (NETMF APIs).

Because NETMF is a subset of the full .NET platform, services such as file input/output and
Networking are very close, sometimes identical, between the full .NET Framework and the
smaller .NET Micro Framework. The internet is a great source of .NET examples code that
often can be used in a NETMF program with no changes!

7.2. Loading Assemblies

In an earlier example, the threading libraries were used. This was done by identifying the
namespace via the statement:

using System.Threading;

The compiled code for classes in the Threading library are part of the mscorlib assembly
(DLL).

Rev. 0.01 Page 20 of 51 www.GHIElectronics.com

http://www.ghielectronics.com/
https://www.ghielectronics.com/support/netmf

GHI Electronics,LLC G80 SoC User Manual

The Libraries

To use other libraries, the proper assembly file (DLL) must be added to the project. Such as in
adding the Microsoft.SPOT.Hardware to use a GPIO pin. Assembly files used by a project are
managed as “References” in Visual Studio:

Important note: The emulator will only work with the Microsoft assemblies. GHI Electronics'
libraries will not run on the emulator.

Rev. 0.01 Page 21 of 51 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC G80 SoC User Manual

The G80 Dev Board

8. The G80 Dev Board
The G80 Dev Board is the easiest and fastest way to evaluate the G80 SoC. It is also an
excellent place to start developing applications. It offers all of the G80 SoC features right on
the board or it exposes the pins on a clearly labeled header. Finally, it is also a reference
design for the G80 SoC.

The examples provide in this manual take advantage on the G80 Dev Board, allowing for a
quick copy/paste of the code examples.

Rev. 0.01 Page 22 of 51 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC G80 SoC User Manual

The G80 Dev Board

8.1. Digital Inputs/Outputs

GPIO (General Purpose Input Output) are used to set a specific pin high or low states when
the pin is used as an output. On the other hand, when the pin is an input, the pin can be used
to detect a high or low state on the pin. High means there is voltage on the pin, which is
referred to as “true” in programming. Low means there is no voltage on the pin, which is
referred to as “false”. Pins can also be enabled with an internal weak pull-up or pull-down
resistor. Here is a blink LED example.

using System;
using System.Threading;
using Microsoft.SPOT.Hardware;

public class Program
{
 public static void Main()
 {
 OutputPort LED = new OutputPort(Cpu.Pin.GPIO_Pin0, true);
 while (true)
 {
 LED.Write(true);
 Thread.Sleep(500);
 LED.Write(false);
 Thread.Sleep(500);

 }
 }
}

This is available through the Microsoft.SPOT.Hardware assembly.

Rev. 0.01 Page 23 of 51 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC G80 SoC User Manual

The G80 Dev Board

While it is clear that the earlier example blinks an LED every one second (on for 500ms and
off for another 500ms), it is not clear what pin on G80 will be controlled. Instead of using the
generic GPIO_Pin0 name, the actual G80 name can be found in the GHI.Pins assembly. This
example now uses the actual G80 pin name using the GHI.Pins assembly.

using System;
using System.Threading;
using Microsoft.SPOT;
using Microsoft.SPOT.Hardware;

using GHI.Pins;

public class Program
{
 public static void Main()
 {
 OutputPort LED = new OutputPort(GHI.Pins.G80.Gpio.PE14, true);
 while (true)
 {
 LED.Write(true);
 Thread.Sleep(500);
 LED.Write(false);
 Thread.Sleep(500);

 }
 }
}

Rev. 0.01 Page 24 of 51 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC G80 SoC User Manual

The G80 Dev Board

Reading Input pins is as simple! This example will blink an LED only when the button is
pressed.

using System;
using System.Threading;
using Microsoft.SPOT;
using Microsoft.SPOT.Hardware;

using GHI.Pins;

public class Program
{
 public static void Main()
 {
 OutputPort LED = new OutputPort(GHI.Pins.G80.Gpio.PE14, true);
 InputPort Button = new InputPort(GHI.Pins.G80.Gpio.PE0,false,
Port.ResistorMode.PullUp);
 while (true)
 {
 if (Button.Read() == true)
 {
 LED.Write(true);
 Thread.Sleep(500);
 LED.Write(false);
 Thread.Sleep(500);
 }
 }
 }
}

Rev. 0.01 Page 25 of 51 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC G80 SoC User Manual

The G80 Dev Board

Interrupt Pins

The beauty of modern and managed language shines with the use of events and threading.
This example will set a pin high when a button is pressed. It should be noted here that the
system in this example spends most its time a in a lower power state.

Note: Only pins on port 0 and port 2 are interrupt capable.

using System;
using System.Threading;
using Microsoft.SPOT;
using Microsoft.SPOT.Hardware;

using GHI.Pins;

public class Program
{
 public static OutputPort LED = new OutputPort(GHI.Pins.G80.Gpio.PE14, true);
 public static void Main()
 {
 InterruptPort Button = new InterruptPort(GHI.Pins.G80.Gpio.PE0,true,
Port.ResistorMode.PullUp,
 Port.InterruptMode.InterruptEdgeBoth);

 Button.OnInterrupt += Button_OnInterrupt;
 // The system can do anything here, even sleep!
 Thread.Sleep(Timeout.Infinite);
 }

 static void Button_OnInterrupt(uint port, uint state, DateTime time)
 {
 LED.Write(state > 0);
 }
}

Rev. 0.01 Page 26 of 51 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC G80 SoC User Manual

The G80 Dev Board

8.2. Analog Inputs/Outputs

Analog inputs can read voltages from 0V to 3.3V with a 10-Bit resolution. Similarly, the analog
output can set the pin voltage from 0V to 3.3V (VCC to be exact) with 10-Bit resolution. These
built in analog circuitry are not designed to be very accurate. For high accuracy, an external
ADC can be added, using the SPI bus perhaps.

using System;
using Microsoft.SPOT;
using Microsoft.SPOT.Hardware;

public class Program
{
 public static void Main()
 {
 AnalogInput ain = new AnalogInput(GHI.Pins.G80.AnalogInput.PB0);
 Debug.Print("Analog Pin =" + ain.Read());
 }
}

This is available through the Microsoft.SPOT.Hardware assembly.

8.3. PWM

The available PWM pins have a built-in hardware to control the ration of the pin being high vs
low, duty cycle. A pin with duty cycle 0.5 will be high half the time and low the other half. This
is used to control how much energy is transferred out from a pin. An example would be to dim
an LED. With output pins, the LED can be on or off but with PWM, it can be set to 0.1 duty
cycle to give the LED only 10% of the energy.

using System;
using Microsoft.SPOT;
using Microsoft.SPOT.Hardware;

public class Program
{
 public static void Main()
 {
 PWM LED = new PWM(GHI.Pins.G80.PwmOutput.PE14, 10000, 0.10, false);
 LED.Start();
 }
}

Rev. 0.01 Page 27 of 51 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC G80 SoC User Manual

The G80 Dev Board

This is available through the the Microsoft.SPOT.Hardware.PWM assembly.

Another use of PWM is to generate tones. In this case, the duty cycle is typically set to 0.5 but
then the frequency will be changed as desired.

In the case of servo motor control, or when there is a need to generate a pulse at a very
specific timing, PWM provides a way to set the high and low pulse with.

8.4. Signal Generator

Using Signal Generator, developers can produce different waveforms. This is available on any
digital output pin.

using System;
using System.Threading;
using Microsoft.SPOT;
using GHI.Pins;
using GHI.IO;

public class Program
{
 public static void Main()
 {
 uint[] signal = new uint[4] {1000,2000,3000,4000};
 SignalGenerator pin = new SignalGenerator(GHI.Pins.G80.Gpio.PE14, false);

 pin.Set(false, signal);

 Thread.Sleep(Timeout.Infinite);
 }
}

While handeled in software, the SignalGenerator runs through internal interrupts in the
background and so is not blocking to the system. Another Blocking methd is also provided for
higher accuracy. For example, the blocking method can generate acarrier frequency. This is
very useful for infrared remote control applications.

This is available through the GHI.Hardware assembly.

8.5. Signal Capture

Signal Capture monitors a pin and records any changes of the pin into an array. The recorded
values are the times taken between each signal change.

using System;

Rev. 0.01 Page 28 of 51 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC G80 SoC User Manual

The G80 Dev Board

using System.Threading;
using Microsoft.SPOT;
using Microsoft.SPOT.Hardware;
using GHI.Pins;
using GHI.IO;

public class Program
{
 public static void Main()
 {
 uint[] signal = new uint[100];
 SignalCapture pin = new
SignalCapture(GHI.Pins.G80.Gpio.PE0,Port.ResistorMode.Disabled);

 pin.Read(false, signal);

 Thread.Sleep(Timeout.Infinite);
 }
}

This is available through the GHI.Hardware assembly.

Rev. 0.01 Page 29 of 51 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC G80 SoC User Manual

The G80 Dev Board

8.6. Serial Port (UART)

One of the oldest and most common protocols is UART (or USART). G80 hardware exposes
four UART ports

Serial Port G80 SoC UART Hardware Handshaking

COM1 UART0 Not Supported

COM2 UART1 Supported

COM3 UART2 Not Supported

COM4 UART3 Not Supported

Important Note: Serial port pins have 3.3V TTL levels where the PC uses RS232 levels. For
proper communication with RS232 serial ports (PC serial port), an RS232 level converter is
required. One common converter is MAX232.

Note: If the serial port is connected between two TTL circuits, no level converter is needed
but they should be connected as a null modem. Null modem means RX on one circuit is
connected to TX on the other circuit, and vice versa.

using System;
using System.IO.Ports;
using System.Threading;
using Microsoft.SPOT;

public class Program
{
 public static void Main()
 {
 SerialPort COM1 = new SerialPort("COM1");
 int c = COM1.ReadByte();

 // ...
 }
}

This is available through the Microsoft.SPOT.Hardware.SerialPort assembly.

Rev. 0.01 Page 30 of 51 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC G80 SoC User Manual

The G80 Dev Board

8.7. SPI

G80 supports three SPI interfaces, SPI1, SPI2 and SPI3. SPI Bus is designed to interface
with multiple SPI slave devices, the active slave is selected by asserting the Chip Select line
on the relative slave device.

Important note: SPI2 is shared internally with the flash memory G80 uses. Using a chip select
is required with devices connected using SPI2. Improper use of SPI2 will cause G80 to not
boot or not work properly. The use of SPI1 is recommended.

using System.Threading;
using Microsoft.SPOT.Hardware;

public class Program
{
 public static void Main()
 {
 SPI.Configuration MyConfig =
 new SPI.Configuration(Cpu.Pin.GPIO_Pin1,
 false, 0, 0, false, true, 1000, SPI.SPI_module.SPI1);
 SPI MySPI = new SPI(MyConfig);

 byte[] tx_data = new byte[10];
 byte[] rx_data = new byte[10];

 MySPI.WriteRead(tx_data, rx_data);

 Thread.Sleep(Timeout.Infinite);
 }
}

This is available through the Microsoft.SPOT.Hardware assembly.

Rev. 0.01 Page 31 of 51 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC G80 SoC User Manual

The G80 Dev Board

8.8. I2C

I2C is a two-wire addressable serial interface.

The G80 supports one master I2C port. Refer to the Pin-Out Description chapter for more
information about I2C signals assignments to G80 hardware pins.

// Setup the I2C bus
I2CDevice.Configuration con =
 new I2CDevice.Configuration(0x38, 400);
I2CDevice MyI2C = new I2CDevice(con);
// Start a transaction
I2CDevice.I2CTransaction[] xActions =
 new I2CDevice.I2CTransaction[2];
byte[] RegisterNum = new byte[1] { 2 };
xActions[0] = I2CDevice.CreateWriteTransaction(RegisterNum);

This is available through the Microsoft.SPOT.Hardware assembly.

Rev. 0.01 Page 32 of 51 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC G80 SoC User Manual

The G80 Dev Board

8.9. CAN

Controller Area Network is a common interface in industrial control and automotive. CAN is
remarkably robust and works well in noisy environments. All error checking and recovery
methods are done automatically on the hardware. TD (Transmit Data) and RD (Receive Data)
are the only pins needed. These pins carry out the digital signals that need to be converted to
analog before it can be used. There are different CAN transceivers. The most common one is
dual-wire high speed transceivers, capable of transferring data up to 1MBit/second.

using System.Threading;
using Microsoft.SPOT.Hardware;
using GHI.IO;

public class Program
{
 public static void Main()
 {
 ControllerAreaNetwork.Message msg = new ControllerAreaNetwork.Message();
 msg.ArbitrationId = 0x123;
 msg.Data[0]= 1;
 msg.Length =1;
 msg.IsExtendedId = false;
 GHI.IO.ControllerAreaNetwork can = new ControllerAreaNetwork(
 ControllerAreaNetwork.Channel.One,
 ControllerAreaNetwork.Speed.Kbps500);

 can.SendMessage(msg);
 // ...
 }
}

This is available through the GHI.Hardware assembly.

There are two CAN channels on the G80 SoC.

Rev. 0.01 Page 33 of 51 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC G80 SoC User Manual

The G80 Dev Board

8.10. One-wire

Through one-wire, a master can communicate with multiple slaves using a single digital pin.
One-wire can be activated on any Digital I/O on G80.

using System.Threading;
using Microsoft.SPOT;
using Microsoft.SPOT.Hardware;

public class Program
{
 public static void Main()
 {
 // Change this to correct GPI pin for the onewire used in the project!
 OutputPort myPin = new OutputPort(GHI.Pins.G80.Gpio.PE7, false);

 OneWire ow = new OneWire(myPin);

 while (true)
 {
 if (ow.TouchReset() > 0)
 {
 Debug.Print("Device is detected.");
 }
 else
 {
 Debug.Print("Device is not detected.");
 }

 Thread.Sleep(10000);
 }
 }
}

This is available through the Microsoft.SPOT.Hardware.OneWire.

8.11. Graphics

The G80 SoC supports graphics on SPI-based displays. The only limitation on graphics is in
the available memory. While using SPI bus, this GHI Electronics extension to NETMF allows
G80 SoC to write directly, from the internal memory to the SPI bus naively.

With the G80 graphics support, users can leverage the NETMF graphics features such as:

● Windows Presentation Foundation (WPF)

Rev. 0.01 Page 34 of 51 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC G80 SoC User Manual

The G80 Dev Board

● BMP, GIF (still) and JPEG image files.

● Fonts

● Simple Shapes

This simple example will run on the emulator and on the G80 SoC similarly. It requires the
Microsoft.SPOT.Graphics and Microsoft.SPOT.TinyCore.

using System.Threading;
using Microsoft.SPOT;
using Microsoft.SPOT.Hardware;
using Microsoft.SPOT.Presentation;
using Microsoft.SPOT.Presentation.Media;
using GHI.Processor;
using GHI.Pins;

public class Program
{
 public static void Main()
 {
 Display.Populate(Display.GHIDisplay.DisplayN18);
 Display.ControlPin = G80.Gpio.PE10;
 Display.BacklightPin = G80.Gpio.PC7;
 Display.ResetPin = G80.Gpio.PE12;
 Display.ChipSelectPin = G80.Gpio.PD10;
 Display.SpiModule = G80.SpiBus.Spi2;
 Display.Bpp = GHI.Utilities.Bitmaps.BitsPerPixel.BPP16_RGB_BE;
 Display.CurrentRotation = Display.Rotation.CounterClockwise90;
 Display.Save();

 Bitmap LCD = new Bitmap(SystemMetrics.ScreenWidth, SystemMetrics.ScreenHeight);
 byte red = 0;
 int x = 0;
 while (true)
 {
 for (x = 30; x < SystemMetrics.ScreenWidth - 30; x += 10)
 {
 LCD.DrawEllipse(ColorUtility.ColorFromRGB(red, 10, 10), x, 100, 30, 40);
 LCD.Flush();
 red += 3;
 Thread.Sleep(10);
 }

 }
 }
}

Rev. 0.01 Page 35 of 51 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC G80 SoC User Manual

The G80 Dev Board

Fonts

Thanks to NETMF, developers can convert TrueType font files to the TinyFNT format used on
NETMF. The end results will look professionally stunning.

Glide

GHI Electronics has developed a high speed, lightweight full featured graphics/GUI
framework called "Glide." The open-source code is available, with the Apache 2 license. This
allows for a commercial and non-commercial use. For convenience the compiled libraries are
included with GHI's SDK.

Rev. 0.01 Page 36 of 51 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC G80 SoC User Manual

The G80 Dev Board

8.12. USB Host

The USB Host allows the use of USB Hubs, USB storage devices, joysticks, keyboards, mice,
printers and more. Additionally, for USB devices that do not have a standard class, low level
raw USB access is provided for bulk transfers.

using System.Threading;
using GHI.Usb.Host;
using GHI.Usb;
using Microsoft.SPOT;

public class Program
{
 static Mouse mouse;

 public static void Main()
 {

 // Subscribe to USBH event.
 Controller.DeviceConnected += Controller_DeviceConnected;

 // Sleep forever
 Thread.Sleep(Timeout.Infinite);
 }

 static void Controller_DeviceConnected(object sender, Controller.DeviceConnectedEventArgs
e)
 {
 if (e.Device.Type == Device.DeviceType.Mouse)
 {
 Debug.Print("Mouse Connected");
 mouse = new Mouse(e.Device);
 mouse.CursorMoved += mouse_CursorMoved;
 mouse.ButtonChanged += mouse_ButtonChanged;
 }

 }

 static void mouse_CursorMoved(Mouse sender, Mouse.CursorMovedEventArgs e)
 {
 Debug.Print("(x, y) = (" + e.NewPosition.X + ", " +
 e.NewPosition.Y + ")");
 }
}

This is available through the GHI.Usb and GHI.Hardware assemblies.

Rev. 0.01 Page 37 of 51 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC G80 SoC User Manual

The G80 Dev Board

8.13. Accessing Files and Folders

The File System feature in NETMF is near very similar to the full .NET and can be tested from
within the Microsoft NETMF emulator with minor changes. Changes include removing any of
the GHI library dependencies. There are no limits on file sizes and counts, beside the limits of
the FAT file system itself. NETMF supports FAT16 and FAT32.
Files are made accessible on SD cards and on USB memory devices through the USB Host
library.

Most online examples on how to use .NET to access files on PCs can be used to read and
write files on the G80 Module. The GHI Electronics' online documentation has further
examples as well. The only difference from a the full .NET on the PC would be in the need to
mount the media and also in the media names. The easiest way to know and handle the
media names is by obtaining the root directly name and dynamically using that name.

This is available through the GHI.Hardware assembly for SD (or USB media); also required:
assemblies for the file system functions System.IO and Microsoft.SPOT.IO.

Rev. 0.01 Page 38 of 51 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC G80 SoC User Manual

The G80 Dev Board

using System;
using System.IO;
using Microsoft.SPOT;
using Microsoft.SPOT.IO;

using GHI.IO.Storage;

class Program
{
 public static void Main()
 {
 // ...
 // SD Card is inserted
 // Create a new storage device

 SD sdPS = new SDCard();

 // Mount the file system
 sdPS.Mount();

 // Assume one storage device is available, access it through
 // NETMF and display the available files and folders:
 Debug.Print("Getting files and folders:");
 if (VolumeInfo.GetVolumes()[0].IsFormatted)
 {
 string rootDirectory =
 VolumeInfo.GetVolumes()[0].RootDirectory;
 string[] files = Directory.GetFiles(rootDirectory);
 string[] folders = Directory.GetDirectories(rootDirectory);

 Debug.Print("Files available on " + rootDirectory + ":");
 for (int i = 0; i < files.Length; i++)
 Debug.Print(files[i]);

 Debug.Print("Folders available on " + rootDirectory + ":");
 for (int i = 0; i < folders.Length; i++)
 Debug.Print(folders[i]);
 }
 else
 {
 Debug.Print("Storage is not formatted. " +
 "Format on PC with FAT32/FAT16 first!");
 }
 // Unmount when done
 sdPS.Unmount();
 }
}

Rev. 0.01 Page 39 of 51 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC G80 SoC User Manual

The G80 Dev Board

SD/MMC Memory

SD and MMC memory cards have similar interfaces. G80 supports both cards and also
supports SDHC/SDXC cards. The interface runs through a true 4-bit SD interface. SD cards
are available in different sizes but they are all of an identical function making them all
supported on the G80 SoC.

USB Mass Storage

USB mass storage devices such as USB hard drives or memory sticks are directly supported
on G80 through the USB Host library.

8.14. Networking (TCP/IP)

Networking is a crucial part of today's embedded devices and the internet of things IoT.
NETMF includes a full TCP/IP stack with socket support and high level protocols, such as
HTTP. The G80 SoC networking implementation over Ethernet, WiFi and PPP.

The Extensions

The way networking works on NETMF is very similar to the full desktop .NET. Also, the
networking libraries work on the Microsoft NETMF emulator. This allows for testing and
developing right on the desktop, through the emulator. However, GHI Electronics adds few
important extensions to the system to initialize the networking interfaces. For example,
applications that do not use networking can still use the G80 SoC as it defaults with
networking services disabled. Programmatically, developers can choose to add Ethernet for
example. These additions are typically only needed in the initialization and setup stage and
these can't be used on the emulator. If using the emulator is desired, the few initialization
lines can be commented out.

MAC address setting

All G80 SoCs ship with the same default MAC address. This is good for testing a single
device on internal networks. If using multiple devices or reaching the internet, a proper MAC
address must be set.

To set the MAC address, FEZ Config can be used. Also, the G80 SoC can set its own MAC
through software.

byte[] newMAC = new byte[] { 0x00, 0x1A, 0xF1, 0x01, 0x42, 0xDD };
var enc = new GHI.Networking.EthernetENC28J60(SPI.SPI_module.SPI1,
 G80.P1_17, // chip select
 G80.P2_21, // external interrupt

Rev. 0.01 Page 40 of 51 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC G80 SoC User Manual

The G80 Dev Board

 G80.P1_14 // reset
); //change to target design
enc.PhysicalAddress = newMAC;

This is available through the GHI.Networking assembly.

There is no need to set the MAC address when using WiFi as the system obtains the MAC
from the WiFi module itself.

Tip: Some MAC addresses are not legal. The internet includes MAC address generators that
can be used in testing.

IP address (DHCP or static):

DHCP (dynamic) IP and Static IP are both supported. If using dynamic IP, the G80 will not
obtain an IP lease at power up. DHCP can only be enabled from software. FEZ Config has a
DHCP enable option but it has no effect on getting the IP lease on start-up.

var enc = new GHI.Networking.EthernetENC28J60(SPI.SPI_module.SPI1,
 G80.P1_17, // chip select
 G80.P2_21, // external interrupt
 G80.P1_14 // reset
); //change to target design
enc.EnableDhcp();
enc.EnableDynamicDns();

This is available through the GHI.Networking assembly.

Rev. 0.01 Page 41 of 51 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC G80 SoC User Manual

The G80 Dev Board

Ethernet

The support for Ethernet is available through the ENC28J60 SPI-ethernet chip.

using System;
using Microsoft.SPOT.Hardware;
using Microsoft.SPOT;
using Microsoft.SPOT.Net;
using Microsoft.SPOT.Net.NetworkInformation;
using GHI.Pins;
using GHI.Networking;

public class Program
{
 static EthernetENC28J60 enc;
 static bool hasAddress = false;
 static bool available = false;

 public static void Main()
 {
 NetworkChange.NetworkAvailabilityChanged += NetworkChange_NetworkAvailabilityChanged;
 NetworkChange.NetworkAddressChanged += NetworkChange_NetworkAddressChanged;

 var enc = new GHI.Networking.EthernetENC28J60(SPI.SPI_module.SPI1,
 G80.P1_17, // chip select
 G80.P2_21, // external interrupt
 G80.P1_14 // reset
); //change to target design
 enc.Open();
 enc.EnableStaticIP("192.168.1.100", "255.255.255.0", "192.168.1.0");
 enc.EnableStaticDns(new string[] { "192.168.1.0" });

 while (!hasAddress || !available)
 {
 Debug.Print("Initializing");
 System.Threading.Thread.Sleep(100);
 }
 //Network ready now.
 }
 static void NetworkChange_NetworkAvailabilityChanged(object sender,
 NetworkAvailabilityEventArgs e)
 {
 Debug.Print("Network available: " + e.IsAvailable.ToString());
 available = e.IsAvailable;
 }
 static void NetworkChange_NetworkAddressChanged(object sender, EventArgs e)
 {
 Debug.Print("The network address has changed.");
 hasAddress = enc.IPAddress != "0.0.0.0";
 }
}

Rev. 0.01 Page 42 of 51 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC G80 SoC User Manual

The G80 Dev Board

This is available through the GHI.Networking assembly.

Wireless LAN WiFi

To be added!

8.15. PPP

Point to Point (PPP) protocol is essential for devices needing to connect to mobile networks.
While typical embedded devices use the mobile modem's built-in and very limited TCP/IP
stack, systems with the G80 SoC will enjoy the use of these modems through PPP and the
internal NETMF-TCP/IP stack.

The PPP feature is not currently available but is being ported to the G80 SoC.

8.16. USB Client (Device)

To be added.

Rev. 0.01 Page 43 of 51 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC G80 SoC User Manual

The G80 Dev Board

8.17. Extended Weak References (EWR)

EWR is a way for managed applications to store data on non-volatile memory. This is meant
to be used as a configuration holder that does not change frequently. The NETMF
documentation includes further details. A good example is included with the Microsoft .NET
Micro Framework SDK.

See also the Error: Reference source not found section.

8.18. Real Time Clock

The processor includes a real-time clock (RTC) that can operate while the processor is off,
through a backup battery or a super capacitor. An appropriate 32.768KHz crystal must also be
added to the system. All details about power and required crystal can be found in the
STM32F427 datasheet and user manual.

Rev. 0.01 Page 44 of 51 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC G80 SoC User Manual

The G80 Dev Board

NETMF has its own time keeping that is independent from the real time clock. If actual time is
need, the software should read the RTC and set the system's time.

using System;
using GHI.Processor;
using Microsoft.SPOT;

public class Program
{
 public static void Main()
 {
 DateTime DT;
 try
 {
 DT = RealTimeClock.GetDateTime();
 Debug.Print("Current Real-time Clock " + DT.ToString());
 }
 catch
 {
 // If the time is not good due to powerloss
 // an exception will be thrown and a new time will need to be set
 Debug.Print("The date was bad and caused a bad time");
 // This will set a time for the Real-time Clock clock to 1:01:01 on 1/1/2012
 DT = new DateTime(2012, 1, 1, 1, 1, 1);
 RealTimeClock.SetDateTime(DT);
 }

 if (DT.Year < 2011)
 {
 Debug.Print("Time is not resonable");
 }

 Debug.Print("Current Real-time Clock " + RealTimeClock.GetDateTime().ToString());
 // This will set the clock to 9:30:00 on 9/15/2011
 DT = new DateTime(2011, 9, 15, 7, 30, 0);
 RealTimeClock.SetDateTime(DT);
 Debug.Print("New Real-time Clock " + RealTimeClock.GetDateTime().ToString());
 }
}

Tip: The system time can also be set using time services through the internet.

Rev. 0.01 Page 45 of 51 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC G80 SoC User Manual

The G80 Dev Board

8.19. Watchdog

Watchdog is used to reset the system if it enters an erroneous state. The error can be due to
internal fault or the user's managed code. When the Watchdog is enabled with a specified
timeout, the user must keep resetting the Watchdog counter within this timeout interval or
otherwise the system will reset.

// Enable with 10 second timeout
GHI.Processor.Watchdog.Enable(10 * 1000);
while (true)
{
 // Do some work
 GHI.Processor.Watchdog.ResetCounter();
}

8.20. Power Control

Embedded devices often must limit power usage as much as possible. Devices may lower
their power consumption in many ways:

1.Reduce the processor clock
2.Shutdown the processor when system is idle (keep peripherals and interrupts
running)
3.Shutdown specific peripherals
4.Hibernate the system

A common way to wake a device is using the RTC alarm. Whenever the alarm goes off, it will
wake the device. These examples require the GHI.Hardware and Microsoft.SPOT.Hardware
assemblies.

Rev. 0.01 Page 46 of 51 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC G80 SoC User Manual

The G80 Dev Board

Use Microsoft.SPOT.Hardware.HardwareEvent.OEMReserved2 for RTC alarm. When the
program starts, it will set an RTC alarm for 30 seconds in the future and then hibernate until
then.

using GHI.Processor;
using Microsoft.SPOT.Hardware;
using System;

public class Program
{
 public static void Main()
 {
 RealTimeClock.SetAlarm(DateTime.Now.AddSeconds(30));

 PowerState.Sleep(SleepLevel.DeepSleep, HardwareEvent.OEMReserved2);

 ///Continue on with your program here
 }
}

The device will awaken whenever an interrupt port is triggered. Some devices can use
interrupts internally that can cause spurious wakeups if not disabled. Use
Microsoft.SPOT.Hardware.HardwareEvent.OEMReserved1 for interrupts.

NETMF's interrupt ports only function when their glitch filter is enabled or they have an event
handler subscribed.

using Microsoft.SPOT.Hardware;
using System;

public class Program
{
 public static void Main()
 {
 var interrupt = new InterruptPort(Cpu.Pin.GPIO_Pin0, true, Port.ResistorMode.PullUp,
Port.InterruptMode.InterruptEdgeHigh);
 interrupt.OnInterrupt += interrupt_OnInterrupt;

 PowerState.Sleep(SleepLevel.DeepSleep, HardwareEvent.OEMReserved1);

 ///Continue on with your program here
 }

 private static void interrupt_OnInterrupt(uint data1, uint data2, DateTime time)
 {
 //Interrupted
 }
}

Rev. 0.01 Page 47 of 51 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC G80 SoC User Manual

The G80 Dev Board

Rev. 0.01 Page 48 of 51 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC G80 SoC User Manual

Advanced use of the Microcontroller

9. Advanced Use Of The Microcontroller
The G80 SoC is based on the microcontroller. There are times when direct programming is
needed. GHI has extended NETMF to allow assembly level access from managed code to the
. This chapter describes those features.

Important: All examples in this chapter use the GHI.Hardware assembly; add it to
“References” in Visual Studio, see the Loading Assemblies section.

9.1. Register

This class is used for manipulating the processor registers directly.

To be completed.

var EMCCLKSEL = new GHI.Processor.Register(0x400FC100);
EMCCLKSEL.ClearBits(1 << 0); // OVERDRIVE
//EMCCLKSEL.SetBits(1 << 0); // NORMAL

9.2. AddressSpace

Allows applications to read and write memory directly. This code reads a byte from address
0xA0000000.

GHI.Processor.AddressSpace.Read(0xA0000000);

9.3. Battery RAM

To be added.

9.4. EEPROM

To be added.

9.5. Runtime Loadable Procedure

To be determined.

Rev. 0.01 Page 49 of 51 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC G80 SoC User Manual

design Consideration

10. Design Consideration
To be added.

Rev. 0.01 Page 50 of 51 www.GHIElectronics.com

http://www.ghielectronics.com/

GHI Electronics,LLC G80 SoC User Manual

Legal Notice

Legal Notice

Licensing

The G80 SoC, with all its built in software components, is licensed for commercial and non-
commercial use. No additional fee or licensing is required.

Disclaimer
IN NO EVENT SHALL GHI ELECTRONICS, LLC. OR ITS CONTRIBUTORS BE LIABLE FOR ANY

DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS

OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS PRODUCT, EVEN

IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. SPECIFICATIONS ARE SUBJECT TO CHANGE

WITHOUT ANY NOTICE. GHI ELECTRONICS, LLC LINE OF PRODUCTS ARE NOT DESIGNED FOR

LIFE SUPPORT APPLICATIONS.

G80 is a Trademark of GHI Electronics, LLC

.NET Micro Framework, Visual Studio, MFDeploy, and Windows are registered or
unregistered trademarks of Microsoft Corporation.

Other Trademarks and Registered Trademarks are Owned by their Respective Companies.

Rev. 0.01 Page 51 of 51 www.GHIElectronics.com

http://www.ghielectronics.com/

	1. Introduction
	1.1. G80 SoC Key Features
	1.2. Example Applications
	1.3. The .NET Micro Framework
	1.4. GHI Electronics and NETMF

	2. The Hardware
	2.1. Microcontroller

	3. Pin-Out Description
	3.1. Pin-out Table

	4. G80 SoC on boot up
	5. The GHI Boot Loader
	5.1. The Commands

	6. NETMF TinyCLR (firmware)
	6.1. Assemblies Version Matching
	6.2. Deploying to the Emulator
	6.3. Deploying to the G80 SoC
	6.4. Targeting Different Versions of the Framework

	7. The Libraries
	7.1. Finding NETMF Library Documentation
	7.2. Loading Assemblies

	8. The G80 Dev Board
	8.1. Digital Inputs/Outputs
	Interrupt Pins

	8.2. Analog Inputs/Outputs
	8.3. PWM
	8.4. Signal Generator
	8.5. Signal Capture
	8.6. Serial Port (UART)
	8.7. SPI
	8.8. I2C
	8.9. CAN
	8.10. One-wire
	8.11. Graphics
	Fonts
	Glide

	8.12. USB Host
	8.13. Accessing Files and Folders
	SD/MMC Memory
	USB Mass Storage

	8.14. Networking (TCP/IP)
	The Extensions
	MAC address setting
	IP address (DHCP or static):
	Ethernet
	Wireless LAN WiFi

	8.15. PPP
	8.16. USB Client (Device)
	8.17. Extended Weak References (EWR)
	8.18. Real Time Clock
	8.19. Watchdog
	8.20. Power Control

	9. Advanced use of the Microcontroller
	9.1. Register
	9.2. AddressSpace
	9.3. Battery RAM
	9.4. EEPROM
	9.5. Runtime Loadable Procedure

	10. design Consideration
	Legal Notice
	Licensing
	Disclaimer

