
Architectures matérielles – von Neumann

TP2_ARCH_ASM_Approfondissement [mno15012026] 1

Langage machine et assembleur

TP2
Approfondissement

Programmation en Assembleur 6800
Opérations arithmétiques, transferts en mémoire, tests et boucles

 Objectifs du TP

• A. Détecter les dépassements, multiplier. Notions : Flags C et V, instruction MUL.

 Maîtriser les flags N, Z, V, C. Notions : N, Z, V, C

• B. Maîtriser boucles et branchements. Notions : BRA, BEQ, BNE

Prérequis : TP1 - Découverte Assembleur 6800
Ressource : https://webge.fr/6800.html

A. Arithmétique avancée

 Objectifs : Détecter les dépassements, multiplier.

 Notions : Flags C et V, instruction MUL.

A.1. Dépassement de capacité et flags N, V, C
 Objectif : Comprendre le comportement des registres 8 bits lors d’une addition sur des nombres signés et non signés.

 Rappel
Un registre 8 bits peut stocker des valeurs comprises entre 0 et 255.

 Exercice A.1.1 : Dépassement lors d'une addition (nombres non signés)

On effectue l’opération sum ← 200₁₀ + 100₁₀ dans le programme ci-dessous,

Q1. a) Avant d'exécuter le programme, prédisez :

• Donnez le résultat de 200₁₀ + 100₁₀ sur 9 bits : ______________________________________ (utilisez une calculatrice)

• On place ce résultat dans le registre A (8 bits) du 6800. Que contiendra A (en binaire) ? ____________________________

Donnez ce résultat en hexadécimal ________________________et en décimal : _____________________________________

Lancez le simulateur en cliquant sur et chargez le fichier depassement.asm situé dans TP2_SDK68xx.

; SDK6800 - depassement.asm
; opération : Addition de deux entiers non signés
; [Label] Operation [operand] [comment]
 .org $0000 ; Origine du programme en mémoire

 ldaa #200 ; [A] ← 200 en décimal ou [A] ← $C8 en hexa

 adda #100 ; [A] ← 200 + 100 en décimal

 staa sum ; [sum] ← [A]

 .org $0020 ; Origine des données en mémoire (variables)

sum .byte 0

Assemblez le code en cliquant une fois sur

b) Relevez le contenu de la mémoire (code machine ci-dessous et identifiez 10010 et 20010 dans ce code.

0000: _____ _____ _____ _____ _____ _____ _____

c) Exécutez le programme pas à pas et complétez :

Après l'instruction A (hexa) A (décimal) Flag N Flag V Flag C

ldaa #200 C8 200 1 0 _____

adda #100 _____ _____ 0 0 _____

Date : _______________ Classe : _______

Nom : _______________________________

Prénom : _____________________________

RAPPELS
Champ operation : contient un opcode
ou une directive d’assemblage

Directives d’assemblage
.org : la directive ORG indique l'adresse

de départ du code assemblé.

.byte : la directive BYTE indique que la

valeur qui suit est un octet.

Adressage immédiat

 Dans l’adressage IMMÉDIAT l’opérande

est une donnée. Cet adressage est identifié
par dièse le symbole dièse (#).

Ex : ldaa #200 ; [A] <- 20010

Rappel : organisation du programme source
Les instructions d'assemblage contiennent les
champs suivants :

[Label] Operation [operand] [comment]

 Remarque : chaque champ doit être séparé
par au moins un espace.

https://webge.fr/6800.html

Architectures matérielles – von Neumann

TP2_ARCH_ASM_Approfondissement [mno15012026] 2

d) Analysez les résultats :

• Après l’opération adda #100, le registre A contient : ____________ (hexa) = ____________ (décimal)

• Le flag C (Carry) vaut : _____________

• Conclusion sur le résultat de l’opération dans sum. Quelle opération utilisant C et sum permet de trouver le bon résultat

 Remarque : Quand C=1, cela signifie qu'il y a eu un dépassement (retenue) voir l’annexe 1.

 Exercice A.1.2 : Dépassement lors d'une addition (nombres signés, importance du bit V [oVerflow])

 Remarque : Le flag V concerne les nombres signés (complément à 2)

Modifiez le programme comme ci-dessous :

; SDK6800 - depassement.asm
; Opération : Addition de deux entiers signés (signe +)
; [Label] Operation [operand] [comment]
 .org $0000 ; Origine du programme en mémoire

 ldaa #127 ; [A] ← 127

 adda #1 ; [A] ← [A] + 1

 staa sum ; [sum] ← [A]

 .org $0020 ; Origine des données en mémoire

sum .byte 0 ; (variables)

Q2 a) Exécutez le programme pas à pas et complétez :

Après l’instruction A (hexa) A (décimal signé) N V C

adda #1 ______ ______ ______ ______ ______

b) Interprétation :

• Après adda #1 le registre A contient _________₁₆ = __________(décimal)

• Flag V = __________ indique un dépassement en arithmétique signée

• Flag N = __________ indique un nombre négatif

Modifiez le programme comme ci-dessous :

; SDK6800 - depassement.asm
; Opération : Addition de deux entiers signés (signe -)
; [Label] Operation [operand] [comment]
 .org $0000 ; Origine du programme en mémoire

 ldaa v1 ; [A] ← [v1]

 adda v2 ; [A] ← [A] + [v2]

 staa sum ; [sum] ← [A]

 .org $0020 ; Origine des données en mémoire (variables)

v1 .byte -128 ; (80 en hexa)

v2 .byte -1 ; (FF en hexa)

sum .byte 0

c) Testez avec v1=-128 (soit 80₁₆) et v2=-1 (soit FF₁₆)

Après l’instruction A (hexa) A (signé) N V C

adda v2 ______ ______ ______ ______ 1

d) Interprétation :

• Après adda v2 le registre A contient ___________₁₆ = ___________ en décimal signé

• Flag V = __________ indique un dépassement en arithmétique signée

• Flag N = __________ indique un nombre _____________ Flag C = 1 car -128 – 1 = -129 n’est pas représentable dans A.

Figure 1 : animation (Sign = N, Overflow = V)

C

V et N

+1

-128 0 127

Débordement arithmétique  V = 1

-1

Rappel : adressage étendu (TD1)

Dans l’adressage ÉTENDU, l’opérande

est une adresse.

Ex : ldaa v1 ; vi  $0020

$ signifie que la valeur qui suit

est en hexadécimal (base 16)

Architectures matérielles – von Neumann

TP2_ARCH_ASM_Approfondissement [mno15012026] 3

A.2. Le résultat de l’opération est nul et flag Z
Modifiez le programme comme ci-dessous :

; [Label] Operation [operand] [comment]
 .org $0000 ; Origine du programme en mémoire

 ldaa v1 ; [A] ← [v1]

 adda v2 ; [A] ← [A] + [v2]

 staa sum ; [sum] ← [A]

 .org $0020 ; Origine des données en mémoire (variables)

v1 .byte -1 ; (FF en Hexa)

v2 .byte 1

sum .byte

Q3 a) Testez avec v1=-1 (soit FF₁₆) et v2=1

Après l’instruction A (hexa) A (décimal signé) N Z V C

staa sum ______ ______ ______ ______ ______ ______

b) Interprétation :

• Après staa sum la case mémoire contient ___________

• Flag Z = __________ indique ___

 Points clés à retenir
• Z=1 : le résultat est exactement zéro (très utile pour les boucles !)

• N=1 : le bit 7 (poids fort) est à 1, nombre négatif en complément à 2

• V=1 : V est consulté pour vérifier si un dépassement de capacité s'est produit lors d'une opération signée. Cet indicateur est positionné à 1 lorsque

le résultat est inférieur au minimum négatif (ici 8016) ou supérieur au maximum positif (ici 7F16).

• C=1 : C est utilisé pour vérifier si un dépassement de capacité s'est produit lors d'une opération non signée. Cet indicateur est mis à 1 lorsque le

résultat est inférieur au minimum (ici 0016) ou supérieur au maximum (FF16).

A.3. Multiplication en machine
 Objectif : Effectuer l'opération v3 ← v1 × v2

 Spécifications :

• Les variables v1 et v2 sont des octets codés en binaire naturel (non signés).

• La variable v3 est un mot sur 16 bits, 0 ≤ v3 ≤ 2¹⁶ - 1

• v3 est constituée de 2 octets v3H (octet de poids fort) et v3L (octet de poids faible)

• H pour High et L pour Low

 Information

Le processeur MC6811 dispose d'une instruction MUL qui multiplie les contenus de A et B.
Le résultat 16 bits est stocké dans le registre double D constitué de A et B (D  A|B).
Avant MUL : A = v1 (8 bits)
 B = v2 (8 bits)

Après MUL : D = A × B (16 bits)
 A contient la partie haute (v3H)
 B contient la partie basse (v3L)

 Exercice A.3.1 : Test avec dépassement 8 bits

Sélectionnez 6811 et chargez le fichier mul.asm situé dans TP2_SDK68xx..

; SDK6811 - mul.asm
; opération : v3 ← v1 x v2
; [Label] Operation [operand] [comment]
 .org $0000 ; Origine du programme en mémoire
 ldaa v1 ; [A] ← [v1]
 ldab v2 ; [B] ← [v2]
 mul ; [D] ← [A] × [B] (D  A|B sur 16 bits)
 staa v3H ; [v3H] ← [A]
 stab v3L ; [v3L] ← [B]

 .org $0020 ; Origine des données en mémoire (variables)
v1 .byte 10 ; Premier facteur
v2 .byte 40 ; Deuxième facteur
v3H .byte 0 ; Résultat poids fort
v3L .byte 0 ; Résultat poids faible

Figure 3 : multiplication de 2
nombres codés sur 4 bits

Exemple : multiplication

Figure 4: code machine de mul.asm (non exécuté)

 Remarque : On utilise le simulateur en mode 6811 [https://bit.ly/3ditlC2]
pour effectuer la multiplication. Le 6800 n’en avait pas !

SYNTAX Mode BYTES CODE CYCLES SYMBOLIC OPERATION

mul INH 1 $3D 10 [A]  ([A] * [B])/256

 [B]  ([A] * [B])*256

Z

Figure 2 : registre d’état des
microprocesseurs

6800/6811

https://www.cs.uaf.edu/2007/fall/cs441/proj1notes/sawyer/inst.html

Architectures matérielles – von Neumann

TP2_ARCH_ASM_Approfondissement [mno15012026] 4

Q4. a) Testez le programme pas à pas et complétez le tableau :

Instruction A (hexa) B (hexa) D (hexa) Commentaire

ldaa v1 0A ______ __________ A = 10₁₀

ldab v2 ______ 28 __________ B = 40₁₀

mul ______ ______ __________ 10₁₀ × 40₁₀ = _____

staa v3H ______ ______ __________ V3H = ________

stab v3L ______ ______ __________ V3L = ________

 b) Après exécution :

• v3H contient : ____________ (hexa)

• v3L contient : ____________ (hexa)

• Le résultat complet v3 (16 bits) est : v3H|v3L = ________________ (hexa)

• Convertissez le résultat en décimal : ___

• Conclusion : Le résultat est-il correct ? _______________

 c) Synthèse - code source et code machine correspondant

• Complétez le code machine ci-dessous après l’exécution du programme.

 Code machine Code source assembleur
Address opcode operand ;label operation [operand] [comment]

 .org $0000 ; Origine du programme en mémoire

__0000__ ______ ________ ldaa v1 ; [A] ← [v1]

________ ______ ________ ldab v2 ; [B] ← [v2]

________ ______ ________ mul ; [D] ← [A] × [B] (D  A|B sur 16 bits)

__0007__ ______ ________ staa v3H ; [v3H] ← [A]

________ ______ ________ stab v3L ; [v3L] ← [B]

 .org $0020 ; Origine des données en mémoire (variables)

0020 ______ v1 .byte 10 ; Premier facteur

________ ______ v2 .byte 40 ; Deuxième facteur

________ ______ v3H .byte 0 ; Résultat poids fort

________ ______ v3L .byte 0 ; Résultat poids faible

 Points clés à retenir
• Le code source (écrit par le programmeur) n’étant pas destiné à être exécuté par le processeur, un programme de traduction automatique

(l’assembleur) est nécessaire.

• Bien que plus facile à manipuler que les "codes machines", l'assembleur est fastidieux à écrire, car comme on le voit ci-dessus il faut aligner un

grand nombre d'instructions pour obtenir un résultat, même simple. De plus, il ne s'adresse qu'à un seul modèle de processeur. Tout changement de
machine nécessite une réécriture plus ou moins complète du code.

• Pour pallier ces défauts, des langages évolués comme le C, le PHP ou le Python ont été développés. Ils permettent au programmeur de se
concentrer sur l'algorithmique des applications. Comme les instructions ne sont plus compréhensibles par l'ordinateur, une phase de traduction est
nécessaire. C'est le rôle des interpréteurs et des compilateurs.

Aujourd'hui, l'assembleur reste utilisé pour écrire des parties des systèmes d'exploitation, gestionnaires de périphériques, etc.

Assembleur

Code source Code machine Logiciel
Traducteur

Architectures matérielles – von Neumann

TP2_ARCH_ASM_Approfondissement [mno15012026] 5

B. Instructions de rupture de séquence

 Qu'est-ce qu'une rupture de séquence ?
Par défaut, le processeur exécute les instructions séquentiellement (l'une après l'autre).
Les ruptures de séquence permettent de :

• Brancher à une autre partie du programme (saut)

• Répéter des instructions (boucles)

• Choisir entre plusieurs chemins (conditions)
Types de ruptures :

• Branchement inconditionnel : BRA (Branch Always)

• Branchements conditionnels : BEQ (si Z=1), BNE (si Z=0), etc.

• Appels de sous-programmes : JSR / RTS (partie D)

B.1. Introduction aux sauts

 Exercice B.1.1 : Saut inconditionnel (code BRA)

 Objectif : Comprendre comment sauter une instruction

 BRA : BRanch Always

Chargez le fichier saut.asm situé dans TP2_SDK68xx.

; SDK6811 - saut.asm

; Branchement inconditionnel

; [Label] Operation [operand] [comment]

.org $0000 ; Origine du programme en mémoire

ldaa #5 ; [A] ← 5

bra suite ; Brancher à l'étiquette "suite"

ldaa #10 ; [A] ← 10 Cette ligne sera IGNORÉE

suite staa resultat ; [resultat] ← [A]

 .org $0020 ; Origine des données en mémoire (variables)

resultat .byte 0

Q5. Exécutez pas à pas et observez le registre Compteur Programme (PC) :

Instruction PC avant PC après A Commentaire

ldaa #5 0000 _______ 05 A = 5

bra suite ________ _______ 05 PC saute !

ldaa #10 ////// ////// /// Non exécutée

staa resultat ________ _______ ________ Suite du prog.

Conclusion : L'instruction BRA provoque un branchement _______________________ (conditionnel/inconditionnel).

 Exercice B.1.2 : Premier branchement conditionnel (BEQ)

 Objectif : Brancher seulement si une condition est vraie

 BEQ = Branch if EQual to zero → Brancher si Z=1

Chargez le fichier testzero.asm situé dans TP2_SDK68xx.

; SDK6811 - testzero.asm

; Branchement conditionnel : test zéro

; [Label] Operation [operand] [comment]

.org $0000 ; Origine du programme en mémoire

ldaa data ; [A] ← [data]

beq estnul ; si [A]=0 (Z=1) alors brancher à estnul

ldaa #1 ; sinon [A] ← 1 (data ≠ 0)

bra suite ; brancher à suite

estnul ldaa #0 ; [A] ← 0 (data = 0)

suite staa resultat ; [resultat] ← [A]

 .org $0020 ; Origine des données en mémoire (variables)

data .byte 0 ; Exécutez le programme avec 0 puis avec 5

resultat .byte 0

Figure 5 : branchement inconditionnel

Date : _______________ Classe : _______

Nom : _______________________________

Prénom : _____________________________

Le registre Compteur Programme (PC)

ou compteur ordinal est un registre de

processeur qui indique la position en

mémoire de l'instruction en cours

d'exécution dans le code binaire

d'un programme.

Architectures matérielles – von Neumann

TP2_ARCH_ASM_Approfondissement [mno15012026] 6

Test 1 : valeur = 0

Q6. Complétez le tableau

Instruction A Flag Z Branchement ? Chemin pris

ldaa data 00 1 ////////// //////////

beq estnul _____ _____ OUI / NON ___________

Valeur finale dans resultat : __________

Test 2 : Modifiez valeur = 5, réassemblez

Q7. Complétez le tableau

Instruction A Flag Z Branchement ?

ldaa data 05 _____ //////////

beq estnul ____ _____ OUI / NON

Valeur finale dans resultat : __________

Conclusion :

• BEQ branche si et seulement si ______________________ = 1

• Cela correspond à un résultat égal à __________________

 Transition vers B.2
 Vous savez maintenant faire des sauts et des tests. Combinons-les pour créer des BOUCLES ! │

B.2. Premières boucles simples

 Exercice B.2.1 : Compte à rebours

 Objectif : Répéter des instructions avec un compteur A compléter

 BNE = Branch if Not Equal to zero → Brancher si Z=0

Chargez le fichier compteur.asm situé dans TP2_SDK68xx.

; SDK6811 - compteur.asm

; Décompter

; [Label] Operation [operand] [comment]
.org $0000 ; Origine du programme en mémoire
ldaa #5 ; [A] ← 5

loop deca ; [A] ← [A] - 1
bne loop ; si [A]≠0 (Z=0) alors branchement à loop
staa cmpt ; sinon [cmpt] ← [A]

.org $0020 ; Origine des données en mémoire (variables)

cmpt .byte 0

Avant d'exécuter le programme, répondez :

• Combien de fois la boucle s'exécute-t-elle ? __________

• Quelle sera la valeur finale de cmpt ? _______________

Q8. Exécutez pour compléter le tableau d'exécution de la boucle et vérifiez vos prédictions.

Passage A avant DECA
A après
DECA

Flag Z Branchement ? Commentaire

1 05 04 0 OUI Continue

2 04 03 ______ ______ _________

3 03 ______ ______ ______ _________

4 ______ ______ ______ ______ _________

5 ______ 00 1 NON Sort de la boucle

Conclusion : Pour sortir de la boucle, il faut que Z = _____ (condition de BNE)

Fin

[A]  [data]

[A]  [A] + v2

[A] = 0
(Z = 1)?

[A]  0

[resultat]  [A]

[A]  1

Début

estnul

bra suite

suite

beq estnul

Fin

[A]  [A] + v2

[A] ≠ 0
(Z = 0) ?

Début

loop

bne loop

Architectures matérielles – von Neumann

TP2_ARCH_ASM_Approfondissement [mno15012026] 7

B.3. Boucles avec adressage indexé
 Objectif : Parcourir des données en mémoire

 Nouveauté : Registre X, mode d’adressage indexé

B.3.1. Découverte du registre X

 Objectif : Comprendre le registre d'index et l'adressage indexé

 Le registre X (Index)
Le registre X est un registre 16 bits qui sert de pointeur vers la mémoire.
Il permet de parcourir des tableaux ou des chaînes de caractères.
Instructions clés :

• LDX #adresse : Charger une adresse dans X

• LDAA 0,X : Charger dans A la donnée pointée par X

• INX : Incrémenter X (pointer sur l'octet suivant)

 Exercice B.3.1.1 : Lire trois octets consécutifs

Chargez le fichier parcours.asm situé dans TP2_SDK68xx.

; SDK6811 - parcours.asm
; Introduction aux pointeurs
; [Label] Operation [operand] [comment]
 .org $0000 ; Origine du programme en mémoire

 ldx #data ; [X] ← data (pointe sur le premier octet)
 ldaa 0,X ; [A] ← [0 + [X]] (Lire le premier octet)
 inx ; [X] ← [X] + 1 (pointer sur l’octet suivant)
 ldab 0,X ; Lire le deuxième octet
 inx
 ldaa 0,X ; Lire le troisième octet

 .org $0020 ; Origine des données en mémoire (variables)
data .byte 10,20,30

Q9. Avant d'exécuter le programme, complétez le tableau :

Instruction X (hexa) A (hexa) B (hexa)
Donnée pointée

en hexa (décimal)
Adresse de

la donnée pointée (hexa)

ldx #data 0020 // // 0A (10) 0020

ldaa 0,X 0020 0A // 0A (10) 0020

inx 0021 0A // 14 (20) 0021

ldab 0,X ______ ____ ____ __________ __________

inx ______ ____ ____ __________ __________

ldaa 0,X ______ ____ ____ __________ __________

Exécutez et vérifiez.

Conclusion :

• Le registre X contient une ___________________________ (donnée/adresse)

• L'instruction LDAA 0,X signifie : lire la donnée à l'adresse ________________

• INX permet de passer à l'octet ________________ (précédent/suivant)

 Comprendre l'adressage indexé
Mode étendu (vu dans TP1 Découverte) :

ldaa $0020 ; [A] ← [0020] : Affecter le contenu de la mémoire située à l'adresse fixe 002016 au registre A

Mode indexé (nouveau) :

ldx #$0020 ; [X] ← 0020₁₆ : Affecter la valeur 0020₁₆ au registre X
ldaa 0,X ; [A] ← [0+[X]] : Affecter le contenu de la mémoire située à l'adresse 0 + [X] = 0020₁₆ au registre A

inx ; [X]  [X] + 1
ldaa 0,X ; [A] ← [0+[X]] : Affecter le contenu de la mémoire située à l'adresse 0 + [X] = 0021₁₆ au registre A

Avantage : L'adresse change dynamiquement → parfait pour les boucles !

Figure 6 : registres du MC6800

Date : _______________ Classe : _______

Nom : _______________________________

Prénom : _____________________________

Architectures matérielles – von Neumann

TP2_ARCH_ASM_Approfondissement [mno15012026] 8

B.3.2. Chaîne de caractères

 Objectif : Détecter la fin d'une chaîne de caractères

 Qu'est-ce qu'une chaîne de caractères ?
En informatique, une chaîne de caractères est une suite ordonnée de caractères.
En assembleur 6800, la fin d'une chaîne est identifiée par le caractère ASCII NULL (0x00).

Exemple : Adresse Valeur Caractère
$001D 48 'H'
$001E 65 'e'
$001F 6C 'l'
$0020 6C 'l'
$0021 6F 'o'
$0022 00 NULL (caractère de fin de chaîne)

La directive .str ajoute automatiquement le caractère NULL :
Exemple : msg .str "Hello" ; Assemblé en 48 65 6C 6C 6F 00

 Stratégie : Parcours avec test de fin (version avec compteur fixe)

Étape 1 : Parcours de 5 caractères exactement

Chargez le fichier parcoursfixe.asm situé dans TP2_SDK68xx.

 .org $0000 ; origine du programme en mémoire
 ldx #msg ; X pointe sur le premier caractère
 ldab #5 ; Compteur fixe : 5 caractères

loop ldaa 0,X ; Lire le caractère
 ; (Ici on pourrait l'afficher)
 inx ; Passer au caractère suivant
 decb ; Décrémenter compteur
 bne loop ; Continuer si B≠0

.org $0020 ; origine de données en mémoire (variables)

msg .str "Hello"

Q10. Testez et complétez le tableau :

Passage X (hexa) A (hexa) B (hexa) Caractère

1 0020 48 5 'H'

2 0021 _____ _____ _____

3 _____ _____ _____ _____

4 _____ _____ _____ _____

5 _____ _____ _____ _____

Problème : Cette méthode nécessite de connaître la longueur de la chaîne de caractères.

Solution : Détecter le caractère NUL présent dans la chaîne !

 Stratégie finale : Détection du NUL

Étape 2 : Amélioration du code précédent, parcours jusqu'à NUL

Q11. a) Terminez la boucle dans l'algorigramme ci-dessous.

Suite prog

Début Finchaîne

[A]  [0 + [X]]

[A]=0
(Z=1)?

[X]  [X] + 1

cmpa #0

loop

bra loop

beq suite

[X]  msg

b) Complétez les instructions assembleur :

 __________ ; X ← adresse de msg

 loop __________ ; A ← [0+[X]]

 cmpa #0 ; (A = 0 (Z=1)?)

 ___________;si oui alors branchement à suite

 ___________; sinon X ← X + 1

 ___________; branchement à loop

suite ; suite du programme

c) Chargez et complétez le fichier finchaine.asm situé
dans TP2_SDK68xx.

d) Modifier le programme pour que "Hello" s’affiche dans

l’onglet du simulateur.

Figure 7 : chaîne dans la mémoire

Figure 8 : Table des codes de caractères ASCII

Date : _____________ Classe : ______

Nom : ____________________________

Prénom : _________________________

Architectures matérielles – von Neumann

TP2_ARCH_ASM_Approfondissement [mno15012026] 9

Annexe 1 - Registre d’état

Source : Wikipédia [urlr.me/XzhK2T]

Le registre d'état, ou registre de drapeaux est un ensemble de bits représentant des drapeaux au sein

d'un processeur. Le registre RFLAGS est un exemple de registre d'état propre à l'architecture de processeurs x64.

Les bits composant le registre d'état sont indépendants les uns des autres, et la valeur de chacun apporte une information supplémentaire

quant au résultat d'une opération antérieure. En effet, au cours d'un calcul, le processeur va automatiquement mettre à jour le registre d'état,

en plus de fournir le résultat de l'opération. Le registre d'état comporte en général un minimum de quatre drapeaux, que sont les indicateurs

de nullité (résultat égal à zéro), de retenue (l'opération a produit une retenue), de dépassement de capacité (le signe du résultat diffère du

signe des opérandes), ainsi que de négativité (le résultat est inférieur à zéro).

Ces drapeaux peuvent ensuite être utilisés, notamment pour déterminer si une opération conditionnelle doit être exécutée ou non. Une

utilisation fréquente de ce registre consiste à déterminer si un branchement (saut vers une portion spécifique du code) doit être effectué. Pour

cela, on effectue tout d'abord une comparaison entre deux valeurs, qui consiste dans les faits à réaliser une soustraction entre les deux valeurs,

opération qui met à jour le registre d'état. Ensuite, il suffit par exemple de tester la valeur du registre indiquant un résultat négatif pour savoir

laquelle des deux valeurs était la plus grande, et en fonction de cette valeur, réaliser ou non le branchement.

Drapeaux les plus communs

Les drapeaux ci-dessous sont présents dans la plupart des processeurs actuels.

Drapeau Nom Description

Z Zéro Indique que le résultat d'une opération est nul.

C Retenue (Carry) Le résultat de l'opération est incomplet, car une retenue a été produite. Ce bit peut être utilisé pour

réaliser des calculs sur des opérandes plus grands que la taille du processeur, en séparant les valeurs.

Par exemple, un processeur 32 bits pourra additionner des mots de 64 bits en les séparant en deux

mots de 32 bits, additionnés indépendamment, et en utilisant la retenue pour faire le lien entre les

deux.

N / S Signe (Negative ou Sign) Indique que le résultat de l'opération est inférieur à zéro.

V / O Dépassement de

capacité (OVerflow)

Le signe du résultat diffère du signe des opérandes, ce qui indique que la valeur a débordé sur le bit

de signe, et donc que la taille du processeur est trop petite pour stocker le résultat.

Registre d’état des
microprocesseurs

6800/6811

https://fr.wikipedia.org/wiki/Bit
https://fr.wikipedia.org/wiki/Drapeau_(informatique)
https://fr.wikipedia.org/wiki/Processeur
https://fr.wikipedia.org/wiki/RFLAGS
https://fr.wikipedia.org/wiki/X64
https://fr.wikipedia.org/wiki/Branchement
https://fr.wikipedia.org/wiki/Indicateur_de_z%C3%A9ro
https://fr.wikipedia.org/wiki/Indicateur_de_retenue
https://fr.wikipedia.org/wiki/Indicateur_de_signe
https://fr.wikipedia.org/wiki/Indicateur_de_d%C3%A9bordement
https://fr.wikipedia.org/wiki/Indicateur_de_d%C3%A9bordement

Architectures matérielles – von Neumann

TP2_ARCH_ASM_Approfondissement [mno15012026] 10

Annexe 2 – Description des instructions utilisées dans les programmes

Le tableau ci-dessous est extrait de la source : https://webge.fr/6800.html . Il permet de connaître l’organisation d’une instruction, son rôle
et sa syntaxe en assembleur MC6800 / 6811.

Opcode
(Base 16)

Nombre d’octets
(Opcode +

Opérande(s))

Syntaxe assembleur
de l’instruction

Opération symbolique Description Remarque

27 2 BEQ disp
(Z == 1) ?
{[PC] ← [PC] + disp + 2}

Si l’instruction précédente a produit un
résultat nul alors PC= PC + disp + 2 sinon
PC=PC+2.
Attention, disp est codé en complément à 2.

Branch if Equal to zero

20 2 BRA disp [PC] ← [PC] + disp + 2
Saut inconditionnel à la position PC +
disp + 2.
Attention, disp est codé en complément à 2.

BRanch Always

81 2 CMPA #data8 [A] – data8
Compare le contenu de l’accumulateur
avec data8

CoMPare A with data8

08 1 INX [X]  [X] + 1 Incrémente le registre d’index X. INcrement X

B6 3 LDAA addr16 [A]  [addr16]

Charge l’accumulateur A avec la donnée
sur 8 bits (opérande) située à la position
addr16.

Load Accumulateur A from
memory

F6 3 LDAB addr16 [B]  [addr16]
Charge l’accumulateur B avec la donnée
sur 8 bits (opérande) située à la position
addr16.

Load Accumulateur B from
memory

CE 3 LDX #addr16
[X(HI)] ← data16(HI),
[X(LO)] ← data16(LO)

Charge le registre d’index X avec la
donnée sur 16bits (opérande) data16.

LoadD the index register X

01 1 NOP No Operation

B7 3 STAA addr16 [addr16] ← [A]
Sauvegarde le contenu de A à l’adresse
addr16.

STore Accumulator A in
Memory

F7 3 STAB addr16 [addr16] ← [B]
Sauvegarde le contenu de B à l’adresse
addr16.

STore Accumulator B in
Memory

Seulement MC6811 (6811 instructions set)

Opcode
(Base 16)

Nombre d’octets
(Opcode +

Opérande(s))

Syntaxe assembleur
de l’instruction

Opération symbolique Description Remarque

3D 1 MUL [D]  [A] * [B]
D est constitué de A et B tel que
D(HI) = A et D(LO)=B.

MULtiplication A with B

 : affectation (la donnée ou l’adresse est transférée dans la direction de la flèche). [...] : contenu de ...
$: la valeur qui suit l’opcode est en hexadécimal. disp : déplacement d’adresse signé sur 8 bits.
: la valeur qui suit l’opcode est une donnée (en l’absence de # c’est une adresse). addr16 : adresse codée sur 16bits.
 data8 : donnée codée sur 8bits.

https://webge.fr/6800.html
http://www.8bit-era.cz/6800.html#PC-reg
http://www.8bit-era.cz/6800.html#transfer-desc
http://www.8bit-era.cz/6800.html#PC-reg
http://www.8bit-era.cz/6800.html#disp-desc
https://webge.fr/6800.html#PC-reg
https://webge.fr/6800.html#transfer-desc
https://webge.fr/6800.html#PC-reg
https://webge.fr/6800.html#disp-desc
http://www.8bit-era.cz/6800.html#A-reg
http://www.8bit-era.cz/6800.html#A-reg
https://webge.fr/6800.html#X-reg
https://webge.fr/6800.html#HI-desc
https://webge.fr/6800.html#transfer-desc
https://webge.fr/6800.html#HI-desc
https://webge.fr/6800.html#X-reg
https://webge.fr/6800.html#LO-desc
https://webge.fr/6800.html#transfer-desc
https://webge.fr/6800.html#LO-desc
http://www.8bit-era.cz/6800.html#transfer-desc
http://www.8bit-era.cz/6800.html#transfer-desc
https://www.cs.uaf.edu/2007/fall/cs441/proj1notes/sawyer/inst.html

