Architectures matérielles — von Neumann

‘ Lycée Polyvalent

PIERRE EMILE MARTIN

/\

Langage machine et assembleur

_académie
d'0rlgéans-Touts

Educalion
nationale

TP2

Approfondissement

Programmation en Assembleur 6800

Opérations arithmétiques, transferts en mémoire, tests et boucles

enseignement
supérieur
recherche

ey Py

s P

@ Objectifs du TP
o A. Détecter les dépassements, multiplier. / Notions : Flags C et V, instruction MUL.
Maitriser les flags N, Z, V, C. / Notions: N, Z,V, C
e B. Maitriser boucles et branchements. / Notions : BRA, BEQ, BNE

Prérequis : TP1 - Découverte Assembleur 6800
Ressource : https://webge.fr/6800.html

Date : Classe :

Nom :

Prénom :

A. Arithmétique avancée

@ Objectifs : Détecter les dépassements, multiplier.
/ Notions : Flags C et V, instruction MUL.

A.1. Dépassement de capacité et flags N, V, C

@ Objectif : Comprendre le comportement des registres 8 bits lors d’une addition sur des nombres signés et non signés.

D Rappel
Un registre 8 bits peut stocker des valeurs comprises entre 0 et 255.
ﬁ Exercice A.1.1 : Dépassement lors d'une addition (nombres non signés)

On effectue I'opération sum <« 20040 + 10040 dans le programme ci-dessous,

Q1. a) Avant d'exécuter le programme, prédisez :
e Donnez le résultat de 2000 + 10010 sur 9 bits :

Rappel : organisation du programme source
Les instructions d'assemblage contiennent les
champs suivants :

[Label] Operation [operand] [comment]

{3 Remarque : chaque champ doit étre séparé
par au moins un espace.

(utilisez une calculatrice)

® On place ce résultat dans le registre A (8 bits) du 6800. Que contiendra A (en binaire) ?

Donnez ce résultat en hexadécimal

et en décimal :

Lancez le simulateur en cliquant sur % et chargez le fichier depassement.asm situé dans TP2_SDK68xx.

; SDK680@ - depassement.asm
; opération : Addition de deux entiers non signés
; [Label] Operation [operand] [comment]
.org $0000 ; Origine du programme en mémoire
ldaa #2600 ; [A] « 200 en décimal ou [A] « $C8 en hexa
adda #100 5 [A] « 200 + 100 en décimal
staa sum 5 [sum] « [A]
.org $0020 ; Origine des données en mémoire (variables)
sum .byte 0

RAPPELS
Champ operation : contient un opcode
ou une directive d’assemblage

Directives d’assemblage
.org : la directive ORG indique I'adresse
de départ du code assemblé.

.byte : la directive BYTE indique que la
valeur qui suit est un octet.

Adressage immédiat

. . St
Assemblez le code en cliquant une fois sur I

EDans I'adressage IMMEDIAT l'opérande
est une donnée. Cet adressage est identifié
par diése le symbole diése (#).

Ex: ldaa #200 ; [A] <- 200,

b) Relevez le contenu de la mémoire (code machine ci-dessous et identifiez 100, et 200, dans ce code.

0000:

c) Exécutez le programme pas a pas et complétez :

Apreés l'instruction A (hexa) A (décimal) Flag N FlagV FlagC
Idaa #200 c8 200 1 0
adda #100 0 0

TP2_ARCH_ASM_Approfondissement [mno15012026]

https://webge.fr/6800.html

Architectures matérielles — von Neumann

d) Analysez les résultats :

e Apres 'opération adda #100, le registre A contient : (hexa) = (décimal)

C

e Conclusion sur le résultat de I'opération dans sum. Quelle opération utilisant C et sum permet de trouver le bon résultat

e Leflag C (Carry) vaut:

{5 Remarque : Quand C=1, cela signifie qu'il y a eu un dépassement (retenue) voir 'annexe 1.

ﬁ Exercice A.1.2 : Dépassement lors d'une addition (nombres signés, importance du bit V [oVerflow])

&5 Remarque : Le flag V concerne les nombres signés (complément a 2)

Modifiez le programme comme ci-dessous :

FvetN

; SDK6800 - depassement.asm

; Opération : Addition de deux entiers signés (signe +)

5 [Label] Operation [operand] [comment]
.org $0000 ; Origine du programme en mémoire -1
ldaa #127 5 [A] « 127
adda #1 5 [A] « [A] +1] >
staa sum ; [sum] « [A] -128 0 127

Débordement arithmétique => V=1

.org $0020 ; Origine des données en mémoire

sum .byte 0 ; (variables)

Q2 a) Exécutez le programme pas a pas et complétez :

Apres l'instruction A (hexa) A (décimal signé) N Vv C
adda #1
b) Interprétation : Action: ADD 1
e Aprés adda #1 le registre A contient 16 = (décimal) Bin: 0001
® FlagVv= indique un dépassement en arithmétique signée :::;gned: i
e FlagN= indique un nombre négatif Signed: 1
Zero: 0
Carrys: [e]
Modifiez le programme comme ci-dessous : Sign: °
; SDK680@ - depassement.asm Overflow: ©
; Opération : Addition de deux entiers signés (signe -)
; [Label] Operation [operand] [comment]
.org $0000 ; Origine du programme en mémoire
ldaa vi 5 [A] « [vi] Figure 1 : animation (Sign = N, Overflow = V)
adda v2 5 [A] « [A] + [v2])
staa sum s [sum] < [A] Rappel : adressage étendu (TD1)
L. B L. . Dans I'adressage ETENDU, I'opérande
.org $0020 ; Origine des données en mémoire (variables)
est une adresse.
vl .byte -128 ; (80 en hexa) Ex:1daa vi ; vi & $0020
v2 .byte -1 ; (FF en hexa) x: ’
sum .byte 0 $ signifie que la valeur qui suit
est en hexadécimal (base 16)

c) Testez avec v1=-128 (soit 80:¢) et v2=-1 (soit FFs)

Apres l'instruction

A (hexa) A (signé) N \" C

adda v2

d) Interprétation :

e Aprés adda v2 le registre A contient

® FlagV=
e FlagN-=

16 = en décimal signé

indique un dépassement en arithmétique signée

indique un nombre

Flag C=1 car-128 — 1 = -129 n’est pas représentable dans A.

TP2_ARCH_ASM_Approfondissement [mno15012026] 2

Architectures matérielles — von Neumann
]

A.2. Le résultat de 'opération est nul et flag Z
Modifiez le programme comme ci-dessous :

; [Label] Operation [operand] [comment] Status Flags
.org $0000 ; Origine du programme en mémoire a8 o 8 8 0
ldaa v1 ;5 [A] « [v1] HIHNZUCECL
adda v2 ;5 [A] « [A] + [v2]
staa sum 3 [sum] « [A] Figure 2 : registre d’état des
microprocesseurs
.org $0020 ; Origine des données en mémoire (variables) 6800/6811
vl .byte -1 5 (FF en Hexa)
v2 .byte 1
sum .byte
Q3 a) Testez avec v1=-1 (soit FF) et v2=1
Apres l'instruction A (hexa) A (décimal signé) N z \" C ! Z
&
staa sum

b) Interprétation :
® Aprés staa sumla case mémoire contient
e FlagZ= indique

Q Points clés a retenir

e Z=1:lerésultat est exactement zéro (trés utile pour les boucles !)

e N=1:le bit 7 (poids fort) est a 1, nombre négatif en complément a 2

e V=1:V est consulté pour vérifier si un dépassement de capacité s'est produit lors d'une opération signée. Cet indicateur est positionné a 1 lorsque
le résultat est inférieur au minimum négatif (ici 8016) ou supérieur au maximum positif (ici 7F1s).

e C=1:Cest utilisé pour vérifier si un dépassement de capacité s'est produit lors d'une opération non signée. Cet indicateur est mis a 1 lorsque le

résultat est inférieur au minimum (ici 0016) ou supérieur au maximum (FFis).

A.3. Multiplication en machine

@ Objectif : Effectuer I'opération v3 ¢ v1 x v2 A 0110 (6)
D Spécifications : B 0111 (7)
e lesvariables vl et v2 sont des octets codés en binaire naturel (non signés). O(l)]]'_(ljo

e Lavariable v3 est un mot sur 16 bits, 0 <v3<2'%-1 0110

0000

e v3est constituée de 2 octets v3H (octet de poids fort) et v3L (octet de poids faible) . UEYY
00101010 (42)

e Hpour High et L pour Low

Il information Figure 3 : multiplication de 2
Le processeur MC6811 dispose d'une instruction MUL qui multiplie les contenus de A et B. nombres codés sur 4 bits
Le résultat 16 bits est stocké dans le registre double D constitué de A et B (D <> A|B).
Avant MUL: A =v1 (8 bits)
B =v2 (8 bits)

& Remarque : On utilise le simulateur en mode 6811 [https://bit.ly/3ditIC2]

. pour effectuer la multiplication. Le 6800 n’en avait pas !
Aprés MUL: D =A xB (16 bits)

A contient la partie haute (v3H) SYNTAX Mode BYTES CODE CYCLES SYMBOLIC OPERATION
B contient la partie basse (v3L) mul INH 1 $3D 10 [A] < ([A] * [B])/256
[B] «— ([A] * [B])*256

ﬁ Exercice A.3.1 : Test avec dépassement 8 bits

Sélectionnez 6811 et chargez le fichier mul.asm situé dans TP2_SDK68xx..

; SDK6811 - mul.asm
; opération : v3 <« vl x v2
; [Label] Operation [operand] [comment] Assembly Program H&811 -

.org $0000 ; Origine du programme en mémoire
ldaa v1 3 [A] < [vi] Hemory ‘ Display Reference]
ldab v2 ;5 [B] « [v2] b

; : 0000: [J] 00 20 F6 00 21 3D B7 00 22 F7 00 23 00 00 00
mul 5 [D] « [A] x [B] (D < A|B sur 16 bits) 0010: 00 0O 60 0D 00 OO 00 00 OO 0O 0O DO 60 0D 00 0O
staa v3H ; [v3H] « [A] 8020: BA 28 61 90 00 OO 00 0O OO 0O 0O DO 6O 0D 0O 0O
stab v3L 5 [v3L] « [B]

Figure 4: code machine de mul.asm (non exécuté)
.org $0020 ; Origine des données en mémoire (variables)

vl .byte 10 ; Premier facteur

v2 .byte 40 ; Deuxiéeme facteur

v3H .byte 0 ; Résultat poids fort

v3L .byte 0 ; Résultat poids faible

TP2_ARCH_ASM_Approfondissement [mno15012026] 3

https://www.cs.uaf.edu/2007/fall/cs441/proj1notes/sawyer/inst.html

Architectures matérielles — von Neumann

Q4. a) Testez le programme pas a pas et complétez le tableau :

Instruction A (hexa) B (hexa) D (hexa) Commentaire

Idaa vl 0A A =100

Idab v2 _ 28 B =400

mul 1010x4010=__
staa v3H V3H =

stab v3L V3L=

b) Aprés exécution :

e v3H contient : (hexa)
e v3Lcontient: (hexa)
e Lerésultat complet v3 (16 bits) est : v3H|v3L = (hexa)

e Convertissez le résultat en décimal :

e Conclusion : Le résultat est-il correct ?

c) Syntheése - code source et code machine correspondant
e Complétez le code machine ci-dessous apres I'exécution du programme.

Code machine Code source assembleur
Address opcode operand ;label operation [operand] [comment]

.org $0000 ; Origine du programme en mémoire
_@eoo__ ldaa vl ; [A] « [v1]
ldab v2 ; [B] « [v2]
mul ; [D] « [A] x [B] (D ¢ A|B sur 16 bits)

__0007__ staa v3H; [v3H] « [A]
stab v3L; [v3L] « [B]

.org $0020 ; Origine des données en mémoire (variables)
0020 - vl .byte 10 ; Premier facteur
- v2 .byte 40 ; Deuxiéme facteur
. v3H .byte 0 ; Résultat poids fort
v3L .byte 0 ; Résultat poids faible

Q Points clés a retenir
e Le code source (écrit par le programmeur) n’étant pas destiné a étre exécuté par le processeur, un programme de traduction automatique

(I'assembleur) est nécessaire.

oo01010M
— 01101010
Q\ Assembleur o060 —
10100110
” L

ogiciel :
Code source g Code machine
Traducteur

e Bien que plus facile a manipuler que les "codes machines", I'assembleur est fastidieux a écrire, car comme on le voit ci-dessus il faut aligner un
grand nombre d'instructions pour obtenir un résultat, méme simple. De plus, il ne s'adresse qu'a un seul modeéle de processeur. Tout changement de
machine nécessite une réécriture plus ou moins complete du code.

e Pour pallier ces défauts, des langages évolués comme le C, le PHP ou le Python ont été développés. Ils permettent au programmeur de se
concentrer sur |'algorithmique des applications. Comme les instructions ne sont plus compréhensibles par I'ordinateur, une phase de traduction est

nécessaire. C'est le réle des interpréteurs et des compilateurs.

Aujourd'hui, I'assembleur reste utilisé pour écrire des parties des systémes d'exploitation, gestionnaires de périphériques, etc.

TP2_ARCH_ASM_Approfondissement [mno15012026] 4

Architectures matérielles — von Neumann

B. Instructions de rupture de séquence

n Qu'est-ce qu'une rupture de séquence ?
Par défaut, le processeur exécute les instructions séquentiellement (I'une aprés l'autre).
Les ruptures de séquence permettent de :

e Brancher a une autre partie du programme (saut)

e Répéter des instructions (boucles) Date : Classe :
e Choisir entre plusieurs chemins (conditions)
Types de ruptures : Nom :

e Branchement inconditionnel : BRA (Branch Always)
e Branchements conditionnels : BEQ (si Z=1), BNE (si Z=0), etc.
e Appels de sous-programmes : JSR / RTS (partie D)

B.1. Introduction aux sauts
pExercice B.1.1: Saut inconditionnel (code BRA) P‘
@ Objectif : Comprendre comment sauter une instruction %?\
Il BRA : BRanch Always

Chargez le fichier saut.asm situé dans TP2_SDK68xx.

5 SDK6811 - saut.asm
; Branchement inconditionnel
Saut Labell
.org $0000 ; Origine du programme en mémoire -
1daa #5 s [A] <5 Instruction2 | &

; [Label] Operation [operand] [comment]
bra suite ; Brancher a 1'étiquette "suite" Labell: |
. ldaa #10 ; [A] « 10 A\ Cette ligne sera IGNOREE
suite staa resultat ; [resultat] « [A]

.org $0020 ; Origine des données en mémoire (variables) Figure 5 : branchement inconditionnel
resultat .byte ©

Prénom :

p N . PC | B@08
Q5. Exécutez pas a pas et observez le registre Compteur Programme (PC) :
Instruction PC avant PC apres A Commentaire Le registre Compteur Programme (PC)
4 _ ou compteur ordinal est un registre de
aa#5 0000 E— 05 A=5 processeur qui indique la position en
bra suite 05 PC saute | meanoire de l'instruction en cours
d'exécution dans le code binaire
Idaa #10 /11111 11111/ /// Non exécutée d'un programme.
staa resultat Suite du prog.
Conclusion : L'instruction BRA provoque un branchement (conditionnel/inconditionnel).

ﬁ Exercice B.1.2 : Premier branchement conditionnel (BEQ)
@ Objectif : Brancher seulement si une condition est vraie

nBEQ = Branch if EQual to zero -> Brancher si Z=1

Chargez le fichier testzero.asm situé dans TP2_SDK68xx.
; SDK6811 - testzero.asm

; Branchement conditionnel : test zéro

; [Label] Operation [operand] [comment]

.org $0000 ; Origine du programme en mémoire
ldaa data ;5 [A] « [data]
beq estnul ; si [A]=0 (Z=1) alors brancher a estnul
ldaa #1 ; sinon [A] « 1 (data # 0)
bra suite ; brancher a suite
estnul ldaa #0 ; [A] « @ (data = 9)

suite staa resultat ; [resultat] « [A]

.org $0020 ; Origine des données en mémoire (variables)

data .byte © ; /\ Exécutez le programme avec @ puis avec 5
resultat .byte ©

TP2_ARCH_ASM_Approfondissement [mno15012026] 5

Architectures matérielles — von Neumann

Test 1:valeur=0

Q6. Complétez le tableau

Instruction A Flag Z Branchement ? Chemin pris

Idaa data 00 1 1111111 Y
[A] < [data]
beq estnul OUl / NON
Valeur finale dans resultat :
Test 2 : Modifiez valeur = 5, réassemblez
Q7. Complétez le tableau
beq estnul
Instruction A Flag Z Branchement ? estnul
Idaa data 05 - 111111171 [Al <0 [Al <1
beq estnul OUI/ NON . < brasuite |
suite
Valeur finale dans resultat : [resultat] < [A]
Conclusion :
e BEQbranche si et seulement si =1
e Celacorrespond a un résultat égal a
Q Transition vers B.2
Vous savez maintenant faire des sauts et des tests. Combinons-les pour créer des BOUCLES ! |
B.2. Premieres boucles simples
& Exercice B.2.1 : Compte a rebours m
@ Objectif : Répéter des instructions avec un compteur A compléter
nBNE = Branch if Not Equal to zero - Brancher si Z=0
le
Chargez le fichier compteur.asm situé dans TP2_SDK68xx. loop ©
; SDK6811 - compteur.asm
; Décompter
; [Label] Operation [operand] [comment]
.org $0000 ; Origine du programme en mémoire
ldaa #5 ; [A] «5 bne loop
Loop deca ; [A] « [A] -1
bne Loop ; si [A]#@ (Z=0) alors branchement a loop
staa cmpt ; sinon [cmpt] « [A]
.org $0020 ; Origine des données en mémoire (variables)
cmpt .byte 0
Avant d'exécuter le programme, répondez :
e Combien de fois la boucle s'exécute-t-elle ?
e Quelle sera la valeur finale de cmpt ?
Q8. Exécutez pour compléter le tableau d'exécution de la boucle et vérifiez vos prédictions.
Passage A avant DECA ADaET:s Flag 2 Branchement ? Commentaire
1 05 04 0 oul Continue
2 04 03
3 03
4 I -
5 00 1 NON Sort de la boucle
Conclusion : Pour sortir de la boucle, il faut que Z = (condition de BNE)

TP2_ARCH_ASM_Approfondissement [mno15012026] 6

Architectures matérielles — von Neumann

B.3. Boucles avec adressage indexé Date : Classe :
@ Objectif : Parcourir des données en mémoire

/ Nouveauté : Registre X, mode d’adressage indexé Nom :
. . Prénom :
B.3.1. Découverte du registre X
@ Obijectif : Comprendre le registre d'index et I'adressage indexé Processor
n Le registre X (Index) ORE ToC By FER WM T
Le registre X est un registre 16 bits qui sert de pointeur vers la mémoire.
Il permet de parcourir des tableaux ou des chaines de caracteres. Accumulator A__|__ Accumulator B
: Ze o Index Register 21
Instructions clés : MC6800 e .
e | DX #adresse : Charger une adresse dans X Program Counter -
e |DAAOQ,X : Charger dans A la donnée pointée par X Lelifnfzvic]
e INX : Incrémenter X (pointer sur |'octet suivant) I J; —l
L R S
ﬁ Exercice B.3.1.1 : Lire trois octets consécutifs B M conta
Chargez le fichier parcours.asm situé dans TP2_SDK68xx. Figure 6 : registres du MC6800
; SDK6811 - parcours.asm
; Introduction aux pointeurs
; [Label] Operation [operand] [comment]
.org $0000 ; Origine du programme en mémoire
1ldx #data ; [X] « data (pointe sur le premier octet)
ldaa 0,X ; [A] « [0 + [X]] (Lire le premier octet)
inx ; [X] « [X] + 1 (pointer sur 1’octet suivant)
ldab 0,X ; Lire le deuxieme octet
inx
ldaa 0,X ; Lire le troisieme octet
.org $0020 ; Origine des données en mémoire (variables)
data .byte 10,20,30

Q9. Avant d'exécuter le programme, complétez le tableau :

Donnée pointée Adresse de

Instruction X (hexa) A (hexa) B (hexa) en hexa (décimal) la donnée pointée (hexa)

ldx #data 0020 // // 0A (10) 0020
Idaa 0,X 0020 0A // 0A (10) 0020
inx 0021 0A // 14 (20) 0021
Idab 0,X . - -

inx - _ _

Idaa 0,X

Exécutez et vérifiez.

Conclusion :

® Le registre X contient une (donnée/adresse)

e L'instruction LDAA 0,X signifie : lire la donnée a I'adresse

e |NX permet de passer a |'octet (précédent/suivant)

Q Comprendre I'adressage indexé
Mode étendu (vu dans TP1 Découverte) :
Idaa $0020 ; [A] € [0020] : Affecter le contenu de la mémoire située a I'adresse fixe 002016 au registre A

Mode indexé (nouveau) :

Idx #50020 ; [X] € 002046 : Affecter la valeur 002046 au registre X

Idaa 0,X ; [A] € [0+[X]] : Affecter le contenu de la mémoire située a I'adresse 0 + [X] = 00204¢ au registre A
inx X« [X]+1

Idaa 0,X ; [A] € [0+[X]] : Affecter le contenu de la mémoire située a I'adresse 0 + [X] = 002116 au registre A

Avantage : L'adresse change dynamiquement - parfait pour les boucles !

TP2_ARCH_ASM_Approfondissement [mno15012026] 7

Architectures matérielles — von Neumann

B.3.2. Chaine de caractéres
Date : Classe :
(@ Objectif : Détecter la fin d'une chaine de caractéres
Nom :
n Qu'est-ce qu'une chaine de caractéres ?
En informatique, une chaine de caractéres est une suite ordonnée de caracteres. Prénom :
En assembleur 6800, la fin d'une chaine est identifiée par le caractere ASCII NULL (0x00).
Exemple : Adresse Valeur Caractére
$001D 48 H oEX , . , , . \
SO001E 65 ‘e
$001F 6C ik _
$0020 6C il VARIABLE H e l o \0
$0021 6F ‘o’
$0022 00 NULL (caractere de fin de chaine) ADRESSE | — | — | sosie | s |

La directive .str ajoute automatiquement le caractére NULL :
Exemple : msg

.str "Hello" 5 Assemblé en 48 65 6C 6C 6F

@ Stratégie : Parcours avec test de fin (version avec compteur fixe)

Etape 1: Parcours de 5 caractéres exactement

Chargez le fichier parcoursfixe.asm situé dans TP2_SDK68xx.

Figure 7 : chaine dans la mémoire

Loop

msg

.org $0000 ; origine du programme en mémoire

1dx #msg
ldab #5
ldaa 0,X
5 (Ici on
inx

decb

bne Loop

.org $0020
.str "Hello"

; X pointe sur le premier caractére

; Compteur fixe : 5 caractéres
; Lire le caractere

pourrait 1'afficher)

; Passer au caractére suivant
; Décrémenter compteur

; Continuer si B#0

; origine de données en mémoire (variables)

MSE| 0 1 2
LSE oo0 [601 | 010

o
%‘«b-
g m
o
-

110
0000 | NUL | DLE | 5P)
0001 | S0H | DC1 !
0010 | ST |DC2 | "
0011 | ETX |DC3 | #
MDD |EQT |DC4 | 6
0101 | ENQ | NAK | %
0110 | ACK | BYN | &

Q10. Testez et complétez le tableau :

Passage X (hexa) A (hexa) B (hexa) Caractere
1 0020 48 5 'H'

2 0021

3

4

5

0111 | BEL |ETB | '
1000 | BE [CAN| (
1001 | HT | EM 1
1010 | LF [SUB| #*
1011 | WT |ESC| +
1100 | FF | FS)
1101 | CR | GS -
110 | 80 | RS .
11| 8l | Us ! ?

clojo|dm|m ||| =]|a S w

A -

sl |— | == |S|<|c|d|w|D|o|D
Ve (= e [= [|2 |2 e |~ o |= |2 |=

W

olz|Z|r|=|c|—|zx|le|m|m|o|c|o|= &

Mmoo |m|F|loj@|(~w|@m|;|s|wufn|=(o
oz |3 |—|=|—|-|=|l= || |a|n ||

DEL

Figure 8 : Table des codes de caracteres ASCII

Probléme : Cette méthode nécessite de connaitre la longueur de la chaine de caracteres.

Solution : Détecter le caractére NUL présent dans la chaine !

@ Stratégie finale : Détection du NUL

Etape 2 : Amélioration du code précédent, parcours jusqu'a NUL

Q11. a) Terminez la boucle dans I'algorigramme ci-dessous.

Début Finchaine

[X] < msg

loop

[Al <= [0 +[X]]

cmpa #0
beq suite

Suite prog

[X] < [X]+1

bra loop

TP2_ARCH_ASM_Approfondissement [mno15012026]

b) Complétez les instructions assembleur :
; X €& adresse de msg
loop ; A< [0+[X]]
cmpa #0 ;(A=0(Z=1)?)
;si oui alors branchement a suite
;sinon X &< X+1
; branchement a loop
suite ; suite du programme
c) Chargez et complétez le fichier finchaine.asm situé
dans TP2_SDK68xx.
d) Modifier le programme pour que "Hello" saffiche dans

I'onglet Pisplay ., simulateur.

Display Buffer B BxFBOS M,pe\
comprises 54% x 28 chars

oot

Architectures matérielles — von Neumann

Status Flags

6| 8 6|8 8|8
HIMHNZWUTL

Annexe 1 - Registre d’état

Source : Wikipédia [urlr.me/XzhK2T]

Registre d’'état des
. '
Le registre d'état, ou registre de drapeaux est un ensemble de bits représentant des drapeauxau sein microprocesseurs

d'un processeur. Le registre RFLAGS est un exemple de registre d'état propre a I'architecture de processeurs x64. 6800/6811

Les bits composant le registre d'état sont indépendants les uns des autres, et |la valeur de chacun apporte une information supplémentaire
quant au résultat d'une opération antérieure. En effet, au cours d'un calcul, le processeur va automatiquement mettre a jour le registre d'état,
en plus de fournir le résultat de I'opération. Le registre d'état comporte en général un minimum de quatre drapeaux, que sont les indicateurs
de nullité (résultat égal a zéro), de retenue (I'opération a produit une retenue), de dépassement de capacité (le signe du résultat differe du
signe des opérandes), ainsi que de négativité (le résultat est inférieur a zéro).

Ces drapeaux peuvent ensuite étre utilisés, notamment pour déterminer si une opération conditionnelle doit étre exécutée ou non. Une
utilisation fréquente de ce registre consiste a déterminer si un branchement (saut vers une portion spécifique du code) doit étre effectué. Pour
cela, on effectue tout d'abord une comparaison entre deux valeurs, qui consiste dans les faits a réaliser une soustraction entre les deux valeurs,
opération qui met a jour le registre d'état. Ensuite, il suffit par exemple de tester la valeur du registre indiquant un résultat négatif pour savoir
laquelle des deux valeurs était la plus grande, et en fonction de cette valeur, réaliser ou non le branchement.

Drapeaux les plus communs

Les drapeaux ci-dessous sont présents dans la plupart des processeurs actuels.

Drapeau = Nom Description
z Zéro Indique que le résultat d'une opération est nul.
C Retenue (Carry) Le résultat de I'opération est incomplet, car une retenue a été produite. Ce bit peut étre utilisé pour

réaliser des calculs sur des opérandes plus grands que la taille du processeur, en séparant les valeurs.
Par exemple, un processeur 32 bits pourra additionner des mots de 64 bits en les séparant en deux
mots de 32 bits, additionnés indépendamment, et en utilisant la retenue pour faire le lien entre les

deux.
N/S Signe (Negative ou Sign) | Indique que le résultat de I'opération est inférieur a zéro.
vV/0 Dépassement de Le signe du résultat differe du signe des opérandes, ce qui indique que la valeur a débordé sur le bit
capacité (OVerflow) de signe, et donc que la taille du processeur est trop petite pour stocker le résultat.

TP2_ARCH_ASM_Approfondissement [mno15012026] 9

https://fr.wikipedia.org/wiki/Bit
https://fr.wikipedia.org/wiki/Drapeau_(informatique)
https://fr.wikipedia.org/wiki/Processeur
https://fr.wikipedia.org/wiki/RFLAGS
https://fr.wikipedia.org/wiki/X64
https://fr.wikipedia.org/wiki/Branchement
https://fr.wikipedia.org/wiki/Indicateur_de_z%C3%A9ro
https://fr.wikipedia.org/wiki/Indicateur_de_retenue
https://fr.wikipedia.org/wiki/Indicateur_de_signe
https://fr.wikipedia.org/wiki/Indicateur_de_d%C3%A9bordement
https://fr.wikipedia.org/wiki/Indicateur_de_d%C3%A9bordement

Architectures matérielles — von Neumann

Annexe 2 — Description des instructions utilisées dans les programmes

Le tableau ci-dessous est extrait de la source : https://webge.fr/6800.html . Il permet de connaitre 'organisation d’une instruction, son réle
et sa syntaxe en assembleur MC6800 / 6811.

Nombre d’octets
Opcode Syntaxe assembleur P . L
(Opcode + ’ . Opération symbolique Description Remarque
(Base 16) . de Pinstruction
Opérande(s))
Si I'instruction précédente a produit un
: (z2==1)7? résultat nul alors PC= PC + disp + 2 sinon .
27 2 BEQ disp {IPC] < [PC] + disp + 2} PC=PCD. Branch if Equal to zero
Attention, disp est codé en complément a 2.
Saut inconditionnel a la position PC +
20 2 BRA disp [PC] & [PC] + disp + 2 disp + 2. BRanch Always
Attention, disp est codé en complément a 2.
81 2 CMPA #data8 [A] - data8 Compare le contenu de Faccumulateur | o \io. o a with datas
avec data8
08 1 INX [X] < [X]+1 Incrémente le registre d’index X. INcrement X
Charge I'accumulateur A avec la donnée Load Accumulateur A from
B6 3 LDAA addrl16 [A] « [addr16] sur 8 bits (opérande) située a la position
memory
addrl6.
Charge I'accumulateur B avec la donnée Load Accumulateur B from
F6 3 LDAB addrl6 [B] « [addr16] sur 8 bits (opérande) située a la position
memory
addrl6.
[X(HI1)] ¢ datal6(HI), Charge le registre d’'index X avec la . .
CE 3 LDX ffaddr16 [X(LO)] ¢ datal6(LO) donnée sur 16bits (opérande) datal6. LoadD the index register X
01 1 NOP No Operation
B7 3 STAA addri6 [addr16] < [A] Sauvegarde le contenu de A a I'adresse STore Accumulator A in
addrl6. Memory
7 3 STAB addr16 [addr16] < [B] Sauvegarde le contenu de B a I'adresse STore Accumulator B in
addri6. Memory
Seulement MC6811 (6811 instructions set)
Nombre d’octets
Opcode Syntaxe assembleur S . L.
(Opcode +). . Opération symbolique Description Remarque
(Base 16) , de Pinstruction
Opérande(s))
D est constitué de A et B tel que o .
*
3D 1 MUL [D] « [A] * [B] D(HI) = A et D(LO)=B. MuULtiplication A with B

« : affectation (la donnée ou I'adresse est transférée dans la direction de la fleche).
$: la valeur qui suit I'opcode est en hexadécimal.
#: la valeur qui suit I'opcode est une donnée (en I'absence de # c’est une adresse).

TP2_ARCH_ASM_Approfondissement [mno15012026]

[...] : contenu de ...

disp : déplacement d’adresse signé sur 8 bits.

addr16 : adresse codée sur 16bits.
data8 : donnée codée sur 8bits.

10

https://webge.fr/6800.html
http://www.8bit-era.cz/6800.html#PC-reg
http://www.8bit-era.cz/6800.html#transfer-desc
http://www.8bit-era.cz/6800.html#PC-reg
http://www.8bit-era.cz/6800.html#disp-desc
https://webge.fr/6800.html#PC-reg
https://webge.fr/6800.html#transfer-desc
https://webge.fr/6800.html#PC-reg
https://webge.fr/6800.html#disp-desc
http://www.8bit-era.cz/6800.html#A-reg
http://www.8bit-era.cz/6800.html#A-reg
https://webge.fr/6800.html#X-reg
https://webge.fr/6800.html#HI-desc
https://webge.fr/6800.html#transfer-desc
https://webge.fr/6800.html#HI-desc
https://webge.fr/6800.html#X-reg
https://webge.fr/6800.html#LO-desc
https://webge.fr/6800.html#transfer-desc
https://webge.fr/6800.html#LO-desc
http://www.8bit-era.cz/6800.html#transfer-desc
http://www.8bit-era.cz/6800.html#transfer-desc
https://www.cs.uaf.edu/2007/fall/cs441/proj1notes/sawyer/inst.html

