
Architectures matérielles – von Neumann 

 

TP1_ARCH_ASM_Découverte_Simulateur_SDK68xx [mno15012026]    1 

 

Langage machine et assembleur  

 

TP1 
Découverte 

Programmation en Assembleur 6800 
Opérations arithmétiques et transferts mémoire 

 
       Objectifs du TP 

• Écrire et tester des programmes en assembleur 6800 

• Manipuler les registres et la mémoire 

• Comprendre l'exécution pas à pas d'un programme 

• Analyser le contenu de la mémoire après exécution 
 
Prérequis : Avoir complété le TD1 - Découverte Assembleur 6800 

 
 

            Rappels 
Instructions de base du MC6800 

Instruction Opcode (Extended) Signification Cycles 

ldaa adr B6 Charger A depuis la mémoire 5 

ldab adr F6 Charger B depuis la mémoire 5 

staa adr B7 Stocker A en mémoire 6 

stab adr F7 Stocker B en mémoire 6 

adda adr BB [A]  ← [A] + [adr] 5 

addb adr FB [B] ← [B] + [adr] 5 

suba adr B0 [A]  ← [A]  - [adr] 5 

subb adr F0 [B] ← [B] - [adr] 5 

Notation : [adr] signifie "contenu de l'adresse adr" 
 

Structure d'un programme assembleur 

; [Label]  Operation  [operand]  [comment] 
 .org $0000           ; Origine du programme en mémoire 

; --- Instructions --- 
        ldaa v1             ; Commentaire explicatif 
        adda v2 
        staa v3 
         
        .org $00A0          ; Origine des données en mémoire (variables) 
; --- Données --- 
v1      .byte 10            ; Définition d'une variable 
v2      .byte 20 
v3      .byte 0 

 Remarque : le champ operation contient un opcode (ex : ldaa) ou une directive d’assemblage (ex .org) 

 
Simulateur SDK6800/6811 

 
 

  

 

Registres 

Programme 
source en 

assembleur 6800 
Contenu de la mémoire 

Date : _______________     Classe : _______ 

Nom : _______________________________ 

Prénom : _____________________________ 



Architectures matérielles – von Neumann 

 

TP1_ARCH_ASM_Découverte_Simulateur_SDK68xx [mno15012026]    2 

 

      EXERCICE 1 : Addition simple (Prise en main) 

 
Énoncé 

Écrire un programme qui calcule : resultat  a + b 

Avec : 

• a = 25₁₀ 

• b = 47₁₀ 

• resultat initialisé à 0 
 

Travail à réaliser 

1.1 Complétez le code source suivant : 

; [Label]     Operation  [operand] [comment] 

         .org $0000  ; EX1.asm 

; Instructions du programme en mémoire 

         ldaa __________  ; Charger a dans A 

         ________ b                  ; Ajouter b à A 

         ________ resultat       ; Stocker A dans resultat 

          

         .org $00B0  ; Données du programme (variables) 

a        .byte 25 

b        .byte 47 

resultat  .byte 0 

 
1.2 Avant d'exécuter le programme dans l'émulateur : 

- Calculez manuellement le résultat attendu en décimal : _________________________________ 

- Convertissez ce résultat en hexadécimal : ____________________________________________ 

 Préparez votre dossier home sur le serveur en suivant la fiche « Organisation du dossier de travail » 

 
1.3 Emulateur SDK6800/6811 : 

- Lancez l’émulateur en cliquant sur  
- Chargez le fichier EX1.asm situé sur le serveur dans home/TP1_SDK68xx. Saisissez votre code source dans l’émulateur.  

- Assemblez le code avec un clic sur  et sauvegardez le fichier sous EX1.asm 
- Relevez le contenu de la mémoire (code machine) : 

0000: _____ _____ _____ _____ _____ _____ _____ _____ _____ 

… 
00B0: _____ _____ _____ 

 
1.4 Identifiez dans la mémoire : 

• Les trois opcodes des instructions : _________, _________, _________ 

• Les adresses des variables (opérandes) : _________, _________, _________ 

• Combien d'octets occupent chaque instruction ? ________ 

1.5 Exécutez le programme pas à pas (un pas = une action sur ) : 

• Après ldaa a : A = ________ (en hexa) 

• Après adda b : A = ________ (en hexa) 

• Après staa resultat : Mémoire[00B2] = ________ (en hexa) 

1.6 Le résultat correspond-il à la prédiction de la question 1.2 ? _________  

Directives d’assemblage 

.org : la directive ORG indique l'adresse 

de départ du code assemblé. 

.byte : la directive BYTE indique que la 

valeur qui suit est un octet. 

 

 

Organisation du programme source 

Les instructions d'assemblage contiennent les 
champs suivants : 
                      ----Instruction -→ 

[Label] Operation  [operand] [comment] 

Remarque : chaque champ doit être séparé par au 
moins un espace. 



Architectures matérielles – von Neumann 

 

TP1_ARCH_ASM_Découverte_Simulateur_SDK68xx [mno15012026]    3 

 

      EXERCICE 2 : Soustraction 
 

Énoncé 

Écrire un programme qui calcule : diff   x - y 

Avec : 

• x = 100₁₀ 

• y = 37₁₀ 

• diff initialisé à 0 
 
 

Travail à réaliser 

2.1 Complétez le code source suivant : 

        .org $0000 ; EX2.asm 

          ; Instructions du programme en mémoire 

        ldaa ______ 

        ________ y ; Instruction de soustraction 

        staa ______ 

     

        .org $00C0 ; Données du programme (variables) 

x       .byte 100 

y       .byte 37 

diff    .byte 0 

 

2.2 Prédiction : 

• Valeur de diff attendu en décimal : _______ 

• En hexadécimal : _______ 

 
2.3 Chargez le fichier EX2.asm situé sur le serveur dans home/TP1_SDK68xx. Saisissez votre code source dans l’émulateur. Exécutez-le.  

Valeur de diff après l’exécution du programme en hexadécimal _____________ et en décimal   __________ ? 

 

2.4      Cas limite : Modifiez maintenant les valeurs : 

• x = 50 

• y = 80 

 
Réassemblez et exécutez le programme. Quel résultat obtenez-vous en hexadécimal _____________ et en décimal   __________ ?  

2.5 Expliquez ce résultat surprenant (        Indice : pensez à la capacité d'un registre 8 bits et aux nombres signés/non signés). 

____________________________________________________________________________________________ 

____________________________________________________________________________________________ 

____________________________________________________________________________________________ 

____________________________________________________________________________________________ 

____________________________________________________________________________________________ 

 

  



Architectures matérielles – von Neumann 

 

TP1_ARCH_ASM_Découverte_Simulateur_SDK68xx [mno15012026]    4 

 

      EXERCICE 3 : Calcul à trois opérandes 

Énoncé 

Écrire un programme qui calcule : somme  a + b + c 

Avec  

• a = 15₁₀, 

• b = 28₁₀,  

• c = 42₁₀ 

 

Travail à réaliser 

3.1 Réfléchissez à l'algorithme : 

• Combien d'instructions ldaa, adda, staa sont nécessaires ? _________________________________________________________ 

• Dans quel ordre devez-vous les écrire ? 

_________________________________________________________________________________________________________ 

3.2 Complétez le code source suivant : 

          .org $0000 ; EX3.asm 

            ; instructions du programme (4 instructions) 

          _________________________________________________ 

          _________________________________________________ 

          _________________________________________________ 

          _________________________________________________ 

 

          .org $00D0 ; Données du programme (variables) 
a         .byte 15 
b         .byte 28 
c         .byte 42 
somme     .byte 0 
 

 

3.3 Chargez le fichier EX3.asm situé sur le serveur dans home/TP1_SDK68xx. Saisissez votre code source. Tracez l'évolution du registre A : 
 

Après l'instruction Valeur de A (hexa) Valeur de A (décimal) 

ldaa a   

adda b   

adda c   

staa somme (inchangé)  

 
Valeur de somme après l’exécution du programme en hexadécimal _____________ et en décimal   __________ ? 

 
3.4. Combien d'octets occupent votre programme en mémoire ? ________________________________________ 

 

  



Architectures matérielles – von Neumann 

 

TP1_ARCH_ASM_Découverte_Simulateur_SDK68xx [mno15012026]    5 

      EXERCICE 4 : Utilisation des deux registres A et B 

Énoncé 

Calculez : resultat = (a + b) - (c + d) 

Avec a = 50₁₀, b = 30₁₀, c = 20₁₀, d = 15₁₀ 

Stratégie : 

• Utilisez le registre A pour calculer (a + b) 

• Utilisez le registre B pour calculer (c + d) 

• Puis faites la soustraction 

Travail à réaliser 

4.1 Complétez le code source suivant : 

          .org $0000 

; Instructions du programme en mémoire 

          ldaa a   ; [A] ← [a] 

          adda b   ; [A] ← [A] + [b] 

; Calcul de (c + d) dans B 

          _________ c  ; [B] ← [c]  

          _________ d  ; [B] ← [B] + [d] 

; Soustraction A - B 

;      Problème : il n'existe pas d'instruction "suba B" ! 

; Solution : on doit stocker B en mémoire temporaire 

          _________  temp  ; [temp] ← [B] 

         suba temp             ; [A] ← [A] - [temp] 

          staa resultat  ; [resultat] ] ← [A] 

         
          .org $00E0 ; Données du programme (variables) 

a         .byte 50 

b         .byte 30 

c         .byte 20 

d         .byte 15 

temp     .byte 0              ; Variable temporaire 

resultat  .byte 0 

 
4.2 Prédiction : 

• (a + b) = __50 + ___________ en décimal ______________ en hexadécimal ___________ 

• (c + d) = _________________ en décimal ______________ en hexadécimal ___________ 

• Résultat final = ___________ en décimal ______________ en hexadécimal ___________ 

  

Date : _______________     Classe : _______ 

Nom : _______________________________ 

Prénom : _____________________________ 

 

Les registres A et B sont des accumulateurs. 
Ils servent à stocker temporairement des 
données, à réaliser les calculs, et à échanger 
des valeurs avec la mémoire ou les 
périphériques. 



Architectures matérielles – von Neumann 

 

TP1_ARCH_ASM_Découverte_Simulateur_SDK68xx [mno15012026]    6 

 
4.3 Chargez le fichier EX4.asm situé sur le serveur dans home/TP1_SDK68xx. Saisissez votre code source. Tracez l'évolution des registres : 

Instruction A (hexa) B (hexa) Temp (hexa) 

Initial 00 00 00 

ldaa a    

adda b    

ldab c    

addb d    

stab temp    

suba temp    

staa resultat    

 
Valeur de resultat après l’exécution du programme en hexadécimal _____________ et en décimal   __________ ? 

4.4. Combien d'octets occupent votre programme en mémoire ? ________________________________________ 

 

 

      Tableau récapitulatif (à compléter) 

Exercice Opération Octets code Octets données Résultat 

Ex1 a + b 9 octets 3 octets 7210 = 4816 

Ex2 x - y 9 octets 3 octets 6310 = 3F16 

Ex3 a + b + c    

Ex4 (a+b) – (c+d)    

 

 

       Points clés à retenir 
• Le code source (écrit par le programmeur) n’étant pas destiné à être exécuté par le processeur, un programme de traduction automatique 

(l’assembleur) est nécessaire. 

 
• Bien que plus facile à manipuler que les "codes machines", l'assembleur est fastidieux à écrire, car comme on le voit ci-dessus il faut aligner 

un grand nombre d'instructions pour obtenir un résultat, même simple. De plus, il ne s'adresse qu'à un seul modèle de processeur. Tout changement 
de machine nécessite une réécriture plus ou moins complète du code. 

 

• Pour pallier ces défauts, des langages évolués comme le C, le PHP ou le Python ont été développés. Ils permettent au programmeur de se 
concentrer sur l'algorithmique des applications. Comme les instructions ne sont plus compréhensibles par l'ordinateur, une phase de traduction est 
nécessaire. C'est le rôle des interpréteurs et des compilateurs.  

 
Aujourd'hui, l'assembleur reste utilisé pour écrire des parties des systèmes d'exploitation, gestionnaires de périphériques, etc. 

  

Assembleur 

Code source Code machine Logiciel 
Traducteur 


