Architectures matérielles — von Neumann

PIERRE EMILE MARTIN

Q‘ Lycée Polyvalent

Langage machine et assembleur RO o

/\ Bducation
il
TP1 Programmation en Assembleur 6800 recercae
Découverte Opérations arithmétiques et transferts mémoire ek
@ Objectifs du TP Date : a .
e Ecrire et tester des programmes en assembleur 6800 ate: asse :
e Manipuler les registres et la mémoire N .
e Comprendre I'exécution pas a pas d'un programme om:
o Analyser le contenu de la mémoire aprés exécution Prénom :
Prérequis : Avoir complété le TD1 - Découverte Assembleur 6800
& Rappels
Instructions de base du MC6800
Instruction” Opcode (Extended)” Signification		Cycles				
Idaa adr H B6		Charger A depuis la mémoire		5		
Idab adr		F6		Charger B depuis la mémoire		5
staa adr H B7		Stocker A en mémoire		6		
stab adr		F7		Stocker B en mémoire		6
addaadr		B8 [1Al € [A] + [adr] 5				
addbadr	FB		(B ¢ [B] +[adr]	5		
[subaadr	[BO	1Al €Al - [adn) 5				
subbadr	Fo		18] < [B] - [adr] 5			

Structure d'un program

Notation : [adr] signifie "contenu de |'adresse adr"

me assembleur

nd] [comment]

; Origine du programme en mémoire

; Commentaire explicatif

; Origine des données en mémoire (variables)

; Définition d'une variable

; [Label] Operation [opera
.org $0000

; --- Instructions ---
ldaa v1
adda v2
staa v3
.org $00A0

; --- Données ---

vl .byte 10

v2 .byte 20

v3 .byte 0

A Remarque : le champ operation contient un opcode (ex : Idaa) ou une directive d’assemblage (ex .org)

Simulateur SDK6800/6811
B

Registres

Assembly Program M6888 = Hemory Display Reference v Enable Debug
0001 0000: GO 00 00 0O 6O 00 00 6O 00 00 0O 6O 00 00 66 00 ﬁl
0010: B8 B0 60 GO 6O 0O 00 BB B0 B0 6O B0 08 00 B8 0O PG| 0000 SP| 6000
0020: GO 6O 00 0O 6O 00 00 6B GO 00 0O 6O 00 00 66 00 « [amms ¥
0030: GO 6O 00 0O 6O 00 00 66 OO 00 0O 6O 00 00 66 00
0040: B8 B0 60 GO BO 0O 00 BB B0 B0 6O B0 068 00 B8 0O 1]
0050: 08 B0 08 6O 6O 00 00 66 GO G0 OO B0 08 00 66 0O
0060: GO 6O 00 0O 6O 00 00 6O 0O 00 0O 6O 00 00 66 00 ACCUMULATOR
Programme 0070: 88 86 § 00 88 08
g 0080: 08 60 L. 0 08 60 Af 88 B| o0
source en 0090: 0O 60 Contenu de la mémoire 0 0o 60
00A0: B8 60 o 08 60
assembleur 6800 00BO: BB B0 08 6A 6O 0A GO 6O OO OA 0B 6O 08 80 BO AA Status Flags
00CO: GO 6O 00 0O 6O 00 00 6O GO 00 0O 6O 00 00 66 00 alolelalale
00DO: B8 B0 60 GO 6O 0O 00 BB B0 B0 6O B0 068 00 B8 0O TR RUNE
O0EG: 0O B0 00 0O BG 00 00 BB GO G0 OO BO 04 00 A6 0O
00FO: GO 6O 00 0O 6O 00 00 6B 0O 00 0O 6O 00 00 66 00
6100: 08 B0 60 GO 6O 0O 00 BB B0 B0 6O B0 68 00 B8 0O
6110: 98 B0 60 6O 6O 0O 00 BB B0 B0 BO B0 08 00 B8 0O Eazegtnnventer
0120: 60 60 00 0O 6O 00 00 6B GO 00 0O 6O 00 00 66 00 7l slolEF
0130: 08 00 60 GO 6O 0O 00 BB OO 60 6 GO 60 0O B0 68 .
45)6|E
Break Disabled ~ 1l 2[sln
6600—|
= alB|ec
Clear Load Save step Run | Stop ‘ Hex | Dec Bin

TP1_ARCH_ASM_Découverte_Simulateur_SDK68xx [mn015012026]

Architectures matérielles — von Neumann

& EXERCICE 1 : Addition simple (Prise en main)

Hemory ‘ Display Reference

Enoncé

Assembler: Tag Description Exanple
Directives:

Ecrire un programme qui calcule : resultat «<—a+b org imere to put code .org $200

-equ Define Constant -equ 188
AVEC N .setw Preset memory word.setw $FFFE,18
. .seth Preset memory byte.seth SFFFE,18
= -rmb Reserve Hemory -kmb 16
® a=25p _byte Define Uariable .byte &4
= Array of bytes -byte 1,2,3
® b 4710 -word Define Variable -word 50608
A lie A N array of words -word 1,2,3
e resultat initialisé a 0 .str Define string i T

array of strings .str "a","b"
-stb alias for .byte

Travail a réaliser oo g
-end End of Program -end
1.1 Complétez le code source suivant :
; [Label] Operation [operand] [comment]
.org $0000 ; EX1.asm
; Instructions du programme en mémoire
Idaa ; Charger adans A
b ; Ajouter b a A Directives d’assemblage
resultat ; Stocker A dans resultat .org : la directive ORG indique I'adresse
de départ du code assemblé.
.org $00B0 ; Données du programme (variables) byte: la fj'r?CUVE BYTE indique que la
valeur qui suit est un octet.
a .byte 25
b .byte 47
resultat .byte 0

1.2 Avant d'exécuter le programme dans I'émulateur :
- Calculez manuellement le résultat attendu en décimal :

- Convertissez ce résultat en hexadécimal :

A Préparez votre dossier home sur le serveur en suivant la fiche « Organisation du dossier de travail »

1.3 Emulateur SDK6800/6811 :
- Lancez I'’émulateur en cliquant sur m

- Chargez le fichier EX1.asm situé sur ie serveur dans home/TP1_SDK68xx. Saisissez votre code source dans I'émulateur.

. St . .
- Assemblez le code avec un clic sur | et sauvegardez le fichier sous EX1.asm

- Relevez le contenu de la mémoire (code machine) : Organisation du programme source

0000:

Les instructions d'assemblage contiennent les
champs suivants :

00BO: &----Instruction ->

[Label] Operation [operand] [comment]

1.4 Identifiez dans la mémoire : Remarque : chaque champ doit étre séparé par au

e Les trois opcodes des instructions : , , moins un espace.

e Les adresses des variables (opérandes) : , ,

e Combien d'octets occupent chaque instruction ?

1.5 Exécutez le programme pas a pas (un pas = une action sur ﬁ) :

o Aprésldaaa:A= (en hexa)
® Aprésaddab:A= (en hexa)
® Aprés staa resultat : Mémoire[00B2] = (en hexa)

1.6 Le résultat correspond-il a la prédiction de la question 1.2 ?

TP1_ARCH_ASM_Découverte_Simulateur_SDK68xx [mn015012026] 2

Architectures matérielles — von Neumann

& EXERCICE 2 : Soustraction

Enoncé

Ecrire un programme qui calcule : diff < x-y

Avec :
L] X= 10010
e y= 3710

o diff initialisé a 0

Travail a réaliser

2.1 Complétez le code source suivant :

.org $0000 ; EX2.asm
; Instructions du programme en mémoire
ldaa
y ; Instruction de soustraction
staa
.org $00CO ; Données du programme (variables)
X .byte 100
y .byte 37
diff .byteO

2.2 Prédiction :
e Valeur de diff attendu en décimal :

e En hexadécimal :

2.3 Chargez le fichier EX2.asm situé sur le serveur dans home/TP1_SDK68xx. Saisissez votre code source dans I'émulateur. Exécutez-le.

Valeur de diff apres I'exécution du programme en hexadécimal et en décimal ?

2.4 /\ Cas limite : Modifiez maintenant les valeurs :

e x=50
[] y=80

Réassemblez et exécutez le programme. Quel résultat obtenez-vous en hexadécimal et en décimal ?

2.5 Expliquez ce résultat surprenant (Q Indice : pensez a la capacité d'un registre 8 bits et aux nombres signés/non signés).

TP1_ARCH_ASM_Découverte_Simulateur_SDK68xx [mn015012026]

Architectures matérielles — von Neumann

ﬁ EXERCICE 3 : Calcul a trois opérandes

Enoncé

Ecrire un programme qui calcule : somme <~ a+b+c

Avec
e a=15,
o b=28,
o =42

Travail a réaliser

3.1 Réfléchissez a I'algorithme :

e Combien d'instructions Idaa, adda, staa sont nécessaires ?

e Dans quel ordre devez-vous les écrire ?

3.2 Complétez le code source suivant :

.org $0000 ; EX3.asm

; instructions du programme (4 instructions)

.org S00D0 ; Données du programme (variables)
a .byte 15
b .byte 28
c .byte 42
somme .byte 0

3.3 Chargez le fichier EX3.asm situé sur le serveur dans home/TP1_SDK68xx. Saisissez votre code source. Tracez I'évolution du registre A :

Apres l'instruction|| Valeur de A (hexa) Valeur de A (décimal)
Idaaa

adda b

adda c

staa somme (inchangé)

Valeur de somme apres I'exécution du programme en hexadécimal

3.4. Combien d'octets occupent votre programme en mémoire ?

et en décimal ?

TP1_ARCH_ASM_Découverte_Simulateur_SDK68xx [mn015012026]

Architectures matérielles — von Neumann

ﬁ EXERCICE 4 : Utilisation des deux registres A et B

Enoncé

Calculez : resultat = (a + b) - (c + d)

Avec a = 5040, b = 3010, € = 2040, d = 1510
Stratégie :

e Utilisez le registre A pour calculer (a + b)
e Utilisez le registre B pour calculer (c + d)
® Puis faites la soustraction

Travail a réaliser

4.1 Complétez le code source suivant :

.org $0000
; Instructions du programme en mémoire
Idaa a ; [Al € [a]
adda b i [A] & [A] +[b]
; Calcul de (c + d) dans B
c ; [B] < [c]
d ; [B] < [B] +[d]
; Soustraction A- B
; A Probléme : il n'existe pas d'instruction "suba B" !

; Solution : on doit stocker B en mémoire temporaire

temp ; [temp] & [B]
suba temp ; [A] € [A] - [temp]
staa resultat ; [resultat] | < [A]
.org SO0EO ; Données du programme (variables)
a .byte 50
b .byte 30
c .byte 20
d .byte 15
temp .byte 0 ; Variable temporaire
resultat .byte 0
4.2 Prédiction :
e (a+b)=_50+ en décimal en hexadécimal
o (c+d)= en décimal en hexadécimal
e Résultat final = en décimal en hexadécimal

TP1_ARCH_ASM_Découverte_Simulateur_SDK68xx [mn015012026]

Date : Classe :

Nom :

Prénom :

ACCUMULATOR

Al oo B o0

Les registres A et B sont des accumulateurs.
Ils servent a stocker temporairement des
données, a réaliser les calculs, et a échanger
des valeurs avec la mémoire ou les
périphériques.

Architectures matérielles — von Neumann
]

4.3 Chargez le fichier EX4.asm situé sur le serveur dans home/TP1_SDK68xx. Saisissez votre code source. Tracez |I'évolution des registres :

Instruction A (hexa) B (hexa) Temp (hexa)

Initial 00 00 00

Idaa a

adda b

Idab ¢

addb d

stab temp

suba temp

staa resultat

Valeur de resultat aprés I'exécution du programme en hexadécimal et en décimal ?

4.4. Combien d'octets occupent votre programme en mémoire ?

& Tableau récapitulatif (3 compléter)

Exercice Opération Octets code Octets données Résultat
Ex1 a+b 9 octets 3 octets 7210=48¢
Ex2 X-y 9 octets 3 octets 6310=3F16
Ex3 atb+c
Ex4 (a+b) — (c+d)

Q Points clés a retenir
e Le code source (écrit par le programmeur) n’étant pas destiné a étre exécuté par le processeur, un programme de traduction automatique

(I'assembleur) est nécessaire.
5

g

0010101
onololo
onioiol
nolooo
10100110

Assembleur

Logiciel
Traducteur

Code source Code machine

e Bien que plus facile a manipuler que les "codes machines", I'assembleur est fastidieux a écrire, car comme on le voit ci-dessus il faut aligner
un grand nombre d'instructions pour obtenir un résultat, méme simple. De plus, il ne s'adresse qu'a un seul modeéle de processeur. Tout changement
de machine nécessite une réécriture plus ou moins compléete du code.

e Pour pallier ces défauts, des langages évolués comme le C, le PHP ou le Python ont été développés. Ils permettent au programmeur de se
concentrer sur l'algorithmique des applications. Comme les instructions ne sont plus compréhensibles par I'ordinateur, une phase de traduction est
nécessaire. C'est le role des interpréteurs et des compilateurs.

Aujourd'hui, I'assembleur reste utilisé pour écrire des parties des systémes d'exploitation, gestionnaires de périphériques, etc.

TP1_ARCH_ASM_Découverte_Simulateur_SDK68xx [mn015012026] 6

