

Capteurs - Environnement

[Mise à jour le 1/5/2024]

1. Généralités sur les grandeurs physiques

1.1 Température

• Ressource : Wikipédia

1.2 Humidité

• Ressource : Wikipédia

1.3 Pression

• Ressource : Wikipédia

2. Capteurs de température et de pression

2.1 BMP280

2.1.1 Présentation

• Source : wiki Adafruit

Ce capteur est basé sur le circuit BMP280 et mesure la pression atmosphérique, la température et l'altitude. Il communique avec un microcontrôleur via le bus I2C ou SPI.

• Distributeur: Gotronic

• Caractéristiques

- Alimentation: 3,3 à 5 Vcc
- Interface I2C (**SLA = 0x76** ou **0x77** idem BME280):
 - sur connecteur Qwiic ou Stemma QT
 - sur pastilles femelles au pas de 2,54 mm
- Interface SPI:
 - sur pastilles femelles au pas de 2,54 mm
- Plages de mesure:
 - température: -40°C à 85°C pression: 30 à 110 kPa
 - altitude: en fonction de la pression
- Précision:
 - température: ±1°C pression: ±1 hPa altitude: ±1 m
- Sortie 3,3 Vcc/100 mA maxi
- Dimensions: 19,2 x 17,9 x 2,9 mm

Documentation

PDF à télécharger ici

2.1.2 Bibliothèques

- Arduino UNO
- ESP (Arduino)
- Rpi Pico (µPython)
- A partir du gestionnaire de bibliothèques de l'**IDE Arduino**, installer :

Adafruit BMP280 Library par Adafruit

2.6.8 installed

Arduino library for BMP280 sensors. Arduino library for BMP280 pressure and altitude sensors.

A venir A venir

2024/06/02 20:24 3/15 Capteurs - Environnement

2.1.3 Exemples de code

- Arduino UNO
- ESP (Arduino)
- Rpi Pico (µPython)
- Resource : wiki Adafruit

Exemple de l'IDE Arduino pour tester le capteur
 Dans l'IDE Arduino, sélectionner : Fichier → Exemples → Adafruit BMP280 Library → bmp280test

A venir A venir

3. Capteurs de température et d'humidité

3.1 HYT-221

3.1.1 Présentation

• Source : GitHub

Capteur capacitif **numérique d'humidité et de température** relative présentant une précision de base de $\pm 1,8\%$ HR, calibré et compensé en température. Communication via le **bus l²C** (**adresse 0x28** par défaut).

- Distributeur : Gotronic
- Caractéristiques

- ∘ Alimentation: 2,7 à 5,5 Vcc
- Consommation: <22 μA à 1 Hz (850 μA maxi)
- Consommation en veille: <1 μΑ
- Plage de mesure:
 - 1. 0 à 100% HR
 - 2. -40°C à 125°C
- Précision:
 - 1. ±1,8% HR
 - 2. ±0,2°C
- ∘ Hystérésis: < ±1% HR
- Interface: I^2C (**SLA** = **0x28** modifiable entre 0x00 et 0x7F)
- ∘ Dimensions: 16 x 10 x 6 mm

Documentation

PDF à télécharger ici

3.1.2 Bibliothèques

- Arduino UNO
- ESP8266 (Arduino)
- Rpi Pico (μPython)
- Intégré à l'exemple ci-dessous.
- Intégrée au code de l'exemple ci-dessous
- A venir

3.1.3 Exemples de code

- Arduino UNO
- ESP8266 (Arduino)
- Rpi Pico (μPython)
- Exemple pour tester le capteur

2024/06/02 20:24 5/15 Capteurs - Environnement

A télécharger sur Github..

• Mise en oeuvre du capteur avec un afficheur OLED

 Description : mesure de la température et de l'humidité à l'aide d'un capteur HYT221, test des boutons-poussoirs et affichage sur un écran Oled Adafruit SH1107.

- Matériels
 - Carte à microcontrôleur : Adafruit Feather Huzzah ESP8266 + Support Particle
 - Afficheur : Adafruit OLED SH1107
- Code Arduino

*.cpp

```
// Matériels : Adafruit Feather Huzzah ESP8266 + Support Particle,
Adafruit OLED SH1107, HYT221, câble Qwiic
// Logiciel : Arduino

// A ajouter
#include <SPI.h>
#include <Wire.h>
#include <Adafruit_GFX.h>
#include <Adafruit_SH110X.h>

// Adresse I2C par défaut de HYT 221, 271, 371
#define HYT_ADDR 0x28

#define BUTTON_A 0
#define BUTTON_B 16
#define BUTTON_C 2
```

Last

```
// Constructeurs
Adafruit SH1107 display = Adafruit SH1107(64, 128, &Wire);
void setup()
 // Bus I2C
 Wire.begin();
 Wire.setClock(400000);
  display.begin(0x3C, true); // L'addresse de l'afficheur est 0x3C par
défaut
  // Configuration de l'affichage
 display.setRotation(1); // Affichage horizontal
  display.setTextSize(1);
  display.setTextColor(SH110X WHITE);
  display.clearDisplay(); // Pour ne pas afficher le logo Adafruit
chargé
                          // automatiquement à la mise sous tension
  // Connexion des boutons-poussoirs
  pinMode(BUTTON A, INPUT PULLUP);
  pinMode(BUTTON B, INPUT PULLUP);
  pinMode(BUTTON_C, INPUT_PULLUP);
void loop()
  double humidity;
  double temperature;
  // Efface le buffer
  display.clearDisplay();
 // Test des boutons
  display.setCursor(0, 0);
 if (!digitalRead(BUTTON A))
    display.print("[A]");
 if (!digitalRead(BUTTON B))
    display.print("[B]");
  if (!digitalRead(BUTTON C))
    display.print("[C]");
 // Titre
  display.setCursor(30, 0);
  display.println("HYT221");
 Wire.beginTransmission(HYT_ADDR); // Début de la transmission avec le
capteur HYT221
 Wire.requestFrom(HYT ADDR, 4); // Nécessite 4 octets
```

2024/06/02 20:24 7/15 Capteurs - Environnement

```
// Read the bytes if they are available
 // Les deux premiers octets sont l'humidité, les deux suivants la
température
  if (Wire.available() == 4)
    int b1 = Wire.read();
    int b2 = Wire.read();
    int b3 = Wire.read();
    int b4 = Wire.read();
    Wire.endTransmission(); // Fin de la transmission avec le capteur
HYT221
    // Calcul de l'humidité
    int rawHumidity = b1 << 8 | b2;</pre>
    rawHumidity = (rawHumidity &= 0x3FFF);
    humidity = 100.0 / pow(2, 14) * rawHumidity;
    // Calcul de la température
    b4 = (b4 >> 2);
    int rawTemperature = b3 << 6 | b4;</pre>
    temperature = 165.0 / pow(2, 14) * rawTemperature - 40;
    // Affichage
    display.setCursor(0, 12);
    display.print("Temperature: ");
    display.print(temperature);
    display.println("C ");
    display.print("Humidite: ");
    display.print(humidity);
    display.println("% ");
    // Infos
    display.setCursor(5, 52);
    display.print("Appuyer sur A, B, C");
    display.display();
  }
  else
    display.println("Pas de mesure");
```


Télécharger le projet PlatformIO pour VSCode.

• A venir

3.2 DHT22

• Source: Wiki Seeed studio

3.2.1 Présentation

Ce capteur de température et d'humidité (version pro DHT22) compatible Grove utilise une thermistance CTN et un capteur capacitif et délivre une sortie digitale régit par un protocole 1 fil spécifique (différent du 1 wire de Dallas).

• Distributeur : Gotronic

• Caractéristiques

Interface: compatible Grove
Alimentation: 3,3 à 6 Vcc
Consommation: 1,5 mA

• Plage de mesure:

■ température: -40°C à 80°C (±0,5°C)

humidité: 5 à 99% HR (±2%)
Temps de réponse: 6 à 20 secondes

• Interface : signal TOR (protocol spécifique 1 fil)

o Dimensions: 40 x 20 x 11 mm

Documentation

PDF à télécharger ici

2024/06/02 20:24 9/15 Capteurs - Environnement

3.2.2 Bibliothèques

- Arduino UNO
- RPi Pico (µPython)
- A partir du gestionnaire de bibliothèques de l'IDE Arduino, installer :

DHT sensor library par Adafruit

1.4.6 installed

Arduino library for DHT11, DHT22, etc Temp & Humidity Sensors Arduino library for DHT11, DHT22, etc Temp & Humidity Sensors

A venir

3.2.3 Exemple de code

- Arduino UNO
- RPi Pico (µPython)
- Ressource : Wiki seeedstudio

• **Exemple** de l'IDE Arduino pour tester le capteur

Dans l'IDE Arduino, sélectionner : Fichier → Exemples → DHT sensor library → **DHTtester**

A venir

4. Capteurs atmosphériques

4.1 BME280, BME680

4.1.1 Présentation

• **Sources** : site sparkfun

Capteur environnemental mesurant la température, la pression barométrique et l'humidité! Ce capteur est idéal pour toutes sortes de capteurs météorologiques / environnementaux et peut être utilisé à la fois en I2C et en SPI.

• Distributeurs : Gotronic

Caractéristiques

Alimentation: 3,3 à 5 Vcc

• Plages de mesure:

température: -40°C à 85°C ■ humidité: 0 à 100% HR pression: 300 à 1100 hPa

Précision:

température: ±1°C (±0,5°C pour le BME680)

humidité: ±3%

pression: ±1 hPa (0,12hPa pour le BME680)

- Interfaces:
 - I2C: sur connecteur Qwiic de Sparkfun ou Stemma QT d'Adafruit.
 - Adresse I2C (BME280, BMP280): SLA = 0x76 ou 0x77 idem BMP280
 - SPI: sur pastilles femelles au pas de 2,54 mm (connecteurs mâles à souder inclus)

• Documentation

PDF à télécharger BME280, BME680

4.1.2 Bibliothèques

- Arduino UNO
- ESP (Arduino)
- Rpi Pico (μPython)
- A partir du gestionnaire de bibliothèques de l'IDE Arduino, installer :

2024/06/02 20:24 11/15 Capteurs - Environnement

Adafruit BME280 Library par Adafruit

2.2.4 installed

Arduino library for BME280 sensors. Arduino library for BME280 humidity and pressure sensors.

ou

SparkFun BME280 par SparkFun Electronics

2.0.9 installed

A library to drive the Bosch BME280 Altimeter and Pressure sensor The SparkFun CCS811/BME280 Environmental Combo Breakout takes care of all your atmospheric-quality sensing needs with the popular CCS811 and BME280 ICs. This unique breakout provides a variety of environmental data, including...

• A partir du gestionnaire de bibliothèques de l'**IDE Arduino**, installer :

Adafruit BME280 Library par Adafruit

2.2.4 installed

Arduino library for BME280 sensors. Arduino library for BME280 humidity and pressure sensors.

ou

SparkFun BME280 par SparkFun Electronics

2.0.9 installed

A library to drive the Bosch BME280 Altimeter and Pressure sensor The SparkFun CCS811/BME280 Environmental Combo Breakout takes care of all your atmospheric-quality sensing needs with the popular CCS811 and BME280 ICs. This unique breakout provides a variety of environmental data, including...

- A installer dans le Raspberry Pi Pico
 - Télécharger le code de la bibliothèque BME280 sur Github, le copier dans un fichier BME280.py et l'installer dans le dossier /lib sur le raspberry Pi Pico. Modifier éventuellement l'adresse du composant dans le code de la bibliothèque (0x76 par défaut), ou 0x77 (par ex: sparkfun).

4.1.3 Exemples de code

- Arduino UNO
- ESP (Arduino)
- Rpi Pico (μPython)

A venir

• Exemple de l'IDE Arduino pour tester le capteur

Dans l'IDE Arduino, sélectionner : Fichier → Exemples → SparkFun BME280 → Example1 BasicReadings.ino

- Mise en oeuvre du capteur avec un afficheur OLED
 - **Description** : mesure de de la température, de l'humidité et de la pression à l'aide d'un capteur **Sparkfun BME280**, test des boutons-poussoirs et affichage sur un écran Oled **Adafruit SH1107**. L'écran et le capteur sont reliés via le système **Qwiic** de Sparkfun.

Matériels

Carte à microcontrôleur : Adafruit Feather Huzzah ESP8266

Afficheur : Adafruit OLED SH1107

• Code pour un ESP32 Feather Huzzah

*.cpp

```
// Matériels : Adafruit Feather Huzzah ESP8266 + Support Particle,
Adafruit OLED SH1107, Sparkfun BME280, câble Qwiic
// Logiciel : Arduino
#include <SPI.h>
#include <Wire.h>
#include <Adafruit GFX.h>
#include <Adafruit SH110X.h>
#include "SparkFunBME280.h"
```

2024/06/02 20:24 13/15 Capteurs - Environnement

```
#define BUTTON A 0
#define BUTTON B 16
#define BUTTON C 2
// Constructeurs
Adafruit_SH1107 display = Adafruit_SH1107(64, 128, &Wire);
BME280 bme 280; // L'adresse du circuit BME280 est 0x77 par défaut
void setup()
 // Bus I2C
                           // Initialisation
 Wire.begin();
 Wire.setClock(400000); // Fast I2C
  display.begin(0x3C, true); // L'addresse de l'afficheur est 0x3C par
défaut
  // Configuration de l'affichage
 display.setRotation(1); // Affichage horizontal
  display.setTextSize(1); // Horizontal
 display.setTextColor(SH110X WHITE);
  display.clearDisplay(); // Pour ne pas afficher le logo Adafruit
chargé
                          // automatiquement à la mise sous tension
 // Test de la communication avec le capteur
 if (bme 280.beginI2C() == false)
    display.println("DEFAUT(s)");
    display.println("1. Le capteur BME280 ne repond pas ! ");
    display.println();
    display.print("BLOCAGE du PROGRAMME");
    display.display(); // Transfert du buffer sur l'écran
    while (1)
      delay(10); // Blocage du programme
  }
  // Connexion des boutons-poussoir
  pinMode(BUTTON A, INPUT PULLUP);
  pinMode(BUTTON_B, INPUT_PULLUP);
  pinMode(BUTTON C, INPUT PULLUP);
void loop()
 // Efface le buffer
 display.clearDisplay();
  // Test des boutons
 display.setCursor(0, 0);
  if (!digitalRead(BUTTON A))
    display.print("[A]");
```

```
if (!digitalRead(BUTTON B))
  display.print("[B]");
if (!digitalRead(BUTTON C))
  display.print("[C]");
// Titre
display.setCursor(20, 0);
display.println("Sparkfun BME280");
// Humidité
display.setCursor(0, 12);
display.print("Humidite : ");
display.print(bme_280.readFloatHumidity(), 0);
display.println("%");
// Pression en hPa
display.setCursor(0, 22);
display.print("Pression : ");
display.print(bme 280.readFloatPressure() / 100, 0);
display.println("hPa");
// Température
display.setCursor(0, 32);
display.print("Temp : ");
display.print(bme 280.readTempC(), 1);
display.print("C");
// Infos
display.setCursor(5, 52);
display.print("Appuyer sur A, B, C");
// vield();
display.display(); // Transfert du buffer sur l'écran
delay(10);
```


Télécharger le projet PlatformIO pour VSCode.

Ressource

- MicroPython: BME280 with ESP32 and ESP8266 (Pressure, Temperature, Humidity) sur Random Nerd Tutorials
- Exemple de code pour un Raspberry Pi Pico

2024/06/02 20:24 15/15 Capteurs - Environnement

*.py

```
from machine import Pin, I2C
from time import sleep
import bme280 # bibliothèque du capteur (installée dans /lib

# RP2 - Pin assignment
i2c = I2C(1,scl=Pin(7), sda=Pin(6), freq=400_000)

while True:
   bme = bme280.BME280(i2c=i2c)
   temp = bme.temperature
   hum = bme.humidity
   pres = bme.pressure
   print('Temperature: ', temp)
   print('Humidity: ', hum)
   print('Pressure: ', pres)

sleep(5)
```

4.2 SCD41

• Capteur de CO², température et humidité. Voir Capteurs - Gaz

4.3 SGP30

• Capteur de qualité de l'air intérieur (CO², COV, éthanol, H2). Voir Capteurs - Gaz

From: http://webge.fr/dokuwiki/ - **WEBGE Wikis**

Permanent link:

http://webge.fr/dokuwiki/doku.php?id=materiels: capteurs: environnement: environnement & rev=171465495200 and the property of the property o

Last update: 2024/05/02 15:02

